• Title/Summary/Keyword: hinged

Search Result 256, Processing Time 0.026 seconds

A Study on Natural Frequencies of a Missile having Split Airframes with Hinged Joints (힌지 연결된 분할형 동체를 갖는 유도탄의 고유진동특성 연구)

  • Kang, Choon-Gil;Won, Myong-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.176-184
    • /
    • 2007
  • The missile for this study has shown different natural frequency characteristics depending on the test conditions; natural frequencies obtained from its flight test are higher than those in its ground test. It was found that the hinged joints connecting front airframe to rear one had the nonlinear stiffness and caused the missile to show very complex dynamic characteristics. The angular stiffness at hinged joints was calculated using 3D finite element analysis, and it was verified that there was a highly nonlinear relationship between angular stiffness and external load. Natural frequencies calculated considering the nonlinearity of angular stiffness were nearly the same as test results. Through this study, the dynamic characteristics of a missile having split airframes with hinged joints could be clearly identified and a way of maintaining its natural frequencies consistent was generated.

Dynamic response of a hinged-free beam subjected to impact at an arbitrary location along its span with shear effect

  • Zhang, Y.;Yang, J.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.483-498
    • /
    • 2007
  • In case of considering the shear effect, the complete solutions are obtained for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is hinged and the other end free, subjected to a transverse strike by a travelling rigid mass at an arbitrary location along its span. Special attention is paid to new deformation mechanisms due to shear sliding on both sides of the rigid mass and the plastic energy dissipation. The dimensionless numerical results demonstrate that three parameters, i.e., mass ratio, impact position of mass, as well as the non-dimensional fully plastic shear force, have significant influence on the partitioning of dissipated energy and failure mode of the hingedfree beam. The shear effect can never be negligible when the mass ratio is comparatively small and the impact location of mass is close to the hinged end.

Study on the Interior Space Planning of One-Room Apartment Based on the Hinged System (Hinged System을 적용한 원룸아파트 내부공간 계획에 관한 연구)

  • 정재욱
    • Korean Institute of Interior Design Journal
    • /
    • no.37
    • /
    • pp.21-28
    • /
    • 2003
  • Transformation of complexity and diverse life style of contemporary men have call for increase in demand of single's and couple's living space of one-room apartment. Feasibility for intensive use of one-room apartment, regardless of it's openness and flexible character, multiple function in a single concentrated room without privacy and lack of confrontation of the changes in diverse living pattern enhance uniformity which reflects as an essential problem. Therefore, this study is to present a direction of one-room apartment interior space planning to differentiate from the existing system of uniformity and it's problems. Within the concept of flexibility, establishment of the flexibility factors for the application of hinged system with a movable furniture to compose a flexible space. In conclusion, the applications of hinged system concept of sliding, folding, over-hangings, are applied in existing one-room apartment plan to enhance flexible space planning which to drive in motivation and adaptation of the dweller's life cycle.

A study of hydroelastic behavior of hinged VLFS

  • Sun, Yonggang;Lu, Da;Xu, Jin;Zhang, Xiantao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-179
    • /
    • 2018
  • This paper introduces a new method to study the hydroelastic behavior of hinged Very Large Floating Structures (VLFSs). A hinged two-module structure is used to confirm the present approach. For each module, the hydroelasticity theory proposed by Lu et al. (2016) is adopted to consider the coupled effects of wave dynamics and structural deformation. The continuous condition at the connection position between two adjacent modules is also satisfied. Then the hydroelastic motion equation can be established and numerically solved to obtain the vertical displacement, force and bending moment of the hinged structure. The results calculated by the present new method are compared with those obtained using three-dimensional hydroelasticity theory (Fu et al., 2007), which shows rather good agreement.

Dynamic plastic response of a hinged-free beam subjected to impact at an arbitrary location along its span

  • Zhang, Y.;Yang, J.L.;Hua, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.611-624
    • /
    • 2002
  • In this paper, a complete solution is presented for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is simply supported or hinged and the other end free, subjected to a transverse strike by a travelling mass at an arbitrary location along its span. The governing differential equations are expressed in non-dimensional forms and solved numerically to obtain the instantaneous deflection of the beam and the plastic dissipated energy in the beam. The dynamic behavior for a hinged-free beam is more complicated than that of a free-free beam. It transpires that the mass ratio and impact position have significant influence on the final deformation. In the aspect of energy dissipation, unlike simply supported or clamped beams for which the plastic deformation consumes almost the total input energy, a considerable portion of the input energy would be transferred as rigid-body motion of hinged-free beam, and the energy dissipated in its plastic deformation is greatly reduced.

Free vibration of tapered arches made of axially functionally graded materials

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.569-594
    • /
    • 2013
  • The free vibration of axially functionally graded tapered arches including shear deformation and rotatory inertia are studied through solving the governing differential equation of motion. Numerical results are presented for circular, parabolic, catenary, elliptic and sinusoidal arches with hinged-hinged, hinged-clamped and clamped-clamped end restraints. In this study Differential Quadrature element of lowest order (DQEL) or Lagrangian Interpolation technique is applied to solve the problems. Three general taper types for rectangular section are considered. The lowest four natural frequencies are calculated and compared with the published results.

Out-of-plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral Method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.53-59
    • /
    • 2004
  • The pseudospectral method is applied to the analysis of out-of$.$plane free vibration of circularly curved Timoshenko beams. The analysis is based on the Chebyshev polynomials and the basis functions are chosen to satisfy the boundary conditions. Natural frequencies are calculated for curved beams of circular cross sections under hinged-hinged, clamped-clamped and hinged-clamped end conditions. The present method gives good accuracy with only a limited number of collocation points.

In-Plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral Method

  • Lee, Jinhee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1156-1163
    • /
    • 2003
  • The pseudospectral method is applied to the analysis of in-plane free vibration of circularly curved Timoshenko beams. The analysis is based on the Chebyshev polynomials and the basis functions are chosen to satisfy the boundary conditions. Natural frequencies are calculated for curved beams of rectangular and circular cross sections under hinged-hinged, clamped-clamped and hinged-clamped end conditions and the results are compared with those by transfer matrix method. The present method gives good accuracy with only a limited number of collocation points.

Free Vibrations of Beams with Static Deflections due to Dead Loads (사하중에 의한 정적 처짐을 고려한 보의 자유진동)

  • 이병구;박광규;오상진;모정만
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.451-457
    • /
    • 1994
  • A numerical method is presented to obtain natural frequencies and mode shapes of uniform elastic beams with static deflections due to dead loads. The differential equation governing the free vibration of beam taken into account the static deflection due to deal loads is derived and solved numerically. The hinged-hinged, clamped-clamped and clamped-hinged end constraints are applied in the numerical examples. As the numerical results, the lowest three nondimensional frequency parameters are reported as functions of nondimensional system parameters; the load parameters, and the slenderness rations. And some typical mode shapes of free vibrations are also presented in figures.

  • PDF

Free Vibrations of Circular Strip Foundations with Variable Breadth (변화폭 원호형 띠기초의 자유진동)

  • Lee, Byong-Koo;Huh, Young;Lee, Jong-Kook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper deals with the free vibration analysis of circular strip foundations with the variable breadth. Taking into account effects of both rotatory inertia and shear deformation, differential equations governing free vibrations of such foundations are derived. The Winkler foundation is chosen as the model of soil foundation. The breadth of strip foundation is assumed to be a linear function. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the strip foundations with the hinged-hinged, hinged-clamped. clamped-hinged and clamped-clamped end constraints are considered. The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.