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ABSTRACT

The pseudospectral method is applied to the analysis of out-of-plane free vibration of circularly curved Timoshenko
beams. The analysis is based on the Chebyshev polynomials and the basis functions are chosen to satisfy the boundary
conditions. Natural frequencies are calculated for curved beams of circular cross sections under hinged-hinged, clamped-
clamped and hinged-clamped end conditions. The present method gives good accuracy with only a limited number of
collocation points.

Key Words : Pseudospectral Method, Eigenvalue Analysis, Curved Timoshenko Beam, Out-of-plane Mode

Nomenclature

A = cross sectional area of the beam

B,, C,, D, = basis functions

b,, ¢,, d, = pseudospectral coefficients

E = Young’s modulus

G = shear modulus

I = second moment of area

1, = polar moment of area

J = torsional constant

M, O, § = stress resultants

R = radius of curvature of the curved beam
s, = slenderness ratio

T, = Chebyshev polynomial of the first kind
W, w = displacement in the longitudinal direction
x = shear coefficient

p = density of the beam

® =total angle of the curved beam

®, ¢ = torsional rotation

Y, v = bending rotation

@ = natural frequency in [rad/sec]

Manuscript received: July 1, 2003 ;
Accepted: January 17, 2004

Corresponding Author : Jinhee Lee

Email : jinhlee@hongik.ac.kr

Tel. +82-41-860-2589 ; Fax +82-41-863-0559

53

1. Introduction

Free vibration analysis of curved beams based on the
Timoshenko theory has been carried out using various
methods such as the transfer matrix method (Bickford
and Strom', Irie et al.* 3, Yildirim*), the dynamic
stiffness method (Issa et al.’>, Howson et al.®, Tseng et
al.”, Howson and Jemahs), the differential quadrature
method (Kang et al’) and the finite element method
(Davis et al.!%, Prathap and Babu'', Heppler'?, Lee and
Sin"?, Yang and Sin”).

The performances of the computers have been improved
drastically during the last decade and algorithms that are
easier to implement are preferred these days to those that
run faster. The pseudospectral method can be considered
as a spectral method that performs a collocation process,
which makes its formulation straightforward and
efficient for writing a code for computation. Also it can
be made as spatially accurate as desired through
exponential rate of convergence with mesh refinement.
The pseudospectral method was applied to the
eigenvalue problems of straight Timoshenko beams and
axisymmetric Mindlin plates (Lee'®) and rectangular
Mindlin plates (Lee'®). In this study an out-of-plane free

vibration analysis of curved Timoshenko beams using the
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pseudospectral method is presented.

Fig. 1 Geometric configuration of a circularly curved
beam

Fig. 2 Generalized displacements

Fig. 3 Stress resultants acting on an infinitesimal element
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2. Pseudospectral Formulations

The geometric configuration of a circularly curved
beam is shown in Fig. 1. The slenderness ratio s, of the
curved beam is defined by

s, = AR/I . 1)
The dependent variables and the stress resultants applied
to the infinitesimal element of the beam are described in
Fig. 2 and Fig. 3, respectively.

The equations of motion for the out-of-plane modes
of the curved beam vibration are given as follows:
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The stress resultants M , Q and S are defined by

R\ 06
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Assuming the simple harmonic motions in time

W(6,t)=w(6)cosat,

®(6,t) = ¢(6)cos e,

¥ (0,t)=w(6)coswt
the substitution of Eq. (3) into Eq. (2) yields

2
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When the range of the independent variables is given
by (0<0<0) it is convenient to use the normalized

2
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variable

20-0
6= e

and Eq. (5) can be rewritten as

e[-11], 6)
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4xAG W 2x4AG P pdw
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—(% + K‘AG]W =-a'ply, )
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I _R2¢_ R*®
=-@'pl g
where ' stands for the differentiation with respect to & .

The series expansions of the exact solutions w(¢), ¢(&)
and () have infinite numbers of terms. In this study,
however, they are approximated by the K-th partial sums
as follows:

w(&) = w(¢)=

(&)= 4(£)= (8)

w(¢)= Zd D (

The end conditions considered in this study are
clamped-clamped, hinged-hinged, and clamped-hinged

boundary conditions. The boundary conditions are

expressed by
{ hinged : w=0, ¢=0, M =0, 9)
clamped : w=0, ¢=0, v =0.
The basis functions
B, l(§)=C2n 1(6)2 2n(§)_7;)(§)a
B, (£)=Cy(8) =T, (£)-T (&),  (10)
( =1’2,...)

identically satisfy the boundary conditions u =0 and
¢=0 at £ =+1. The basis function D, («f) is required
to satisfy either =0 or M =0 at the ends. It is
worthwhile to note that in the event §=0 is already
specified at £ =11 the boundary condition M =0 is
reduced to ' =0, and D, (&) is assumed to be

D,, (‘f) =T, (5) -T (5) + ‘1152 +a,¢,
Dln(f) 2n+l (5) T(§)+03§ +a4§9
(n=1.2,-).
The procedure to compute the constants a,, a,, a, and
a, that satisfy the boundary conditions is given in the
Appendix.
By substituting Eq. (8) into Eq. (7) and by setting the

(11
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residuals equal to zero at the collocation points

(2i-1) ,
. =—COS— , i

4 K (

the pseudospectral equations for the out-of-plane mode

is given by

=1,-K) (12)

5 b ez m(e)+a, 250 o)}
="(‘)2szka/:(§;)’
5[ 2kAG 2EI+GJ) ,
50220 (g re, )
+d { :gzD;(g) & 4G D (;,)H
= —wzﬁ:pldek(fi) , (13)
& 4GJ El
;|:C{ 202 /r :) Fck(é)}

2(EI+GJ)

—d, —EZE')_DL (& )}
) K

=-w'Y pl,c,C(
P

(,'21,...,

The total number of pseudospectral coefficients

b, by ey sd,,yd, is 3K, which matches the total

number of equations in Eq. (13), and the equation is
solved for the eigenvalues.

K).

Table 1 Convergence test of nondimensionalized
frequency parameter A, (circular cross section,
clamped-clamped boundary condition, s, =100 )

K=15 K=20 K=25 K=30 2
1 44731 44731 44731 44731 4473
2 12.892 12,892 12.892 12.892 12.89
3 26081 26081 26.081 26081 26.08
4  43.684 43.684 43.684 43.684 43.68
5 65561 65561 65561 65561
6 91.654 91.582 91.582 91.582
7 116.83 116.83 116.83  116.83
8 121.77 121.61 121.61 121.61
9 162.84 155.50 155.50 155.50
10 199.01 19323 193.10 193.10
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Table 2 Nondimensionalized frequency parameter 4,
(circular cross section, clamped-clamped
boundary condition, K =30)

5, ©=60° @=120° ©O=180°
1 12783 39032 17139
2 19.730  9.6368 45178
10 3 26891 11513 8.6029
4 37635 17012 9.3073
5 43609 19704 13469
1 16885 43094  1.7908
2 39700 11796  5.0324
20 3 40934 22510 10232
4 70581 23303 16917
5 75611 35482  18.738
1 19.062 44515 18147
2 51731 12737 52138
50 3 98.146 25534  10.884
4 99483 42300  18.537
5 15534 58386  28.037
1 19.454 44731 1.8182
2 54148 12892 52415
100 3 10586  26.081 10.989
4 173.16  43.684 183813
5 199.01 65561  28.633
1 19.556 44785 18191
2 54.811 12931  5.2485
200 3 108.12 26223 11.016
4 17881  44.055 18.885
5 26647 66354 28788

3. Numerical Examples

A preliminary test is run to check the convergence of
the pseudospectral method applied to the out-of-plane
free vibration analysis of curved Timoshenko beams. The
eigenvalues of circularly curved beam of circular cross
section with clamped-clamped boundary condition for
the slenderness ratio s, =100 are computed for different
collocation number K , and the computed results are
listed in Table 1. This shows the rapid convergence
nature of the pseudospectral method such that the
convergence of the lowest 5 eigenvalues to 5 digits is
achieved for K =15, and the lowest 9 eigenvalues for
less than K =20. Poisson's ratio v is 0.3 and the shear
correction factor x for circular cross section of beam is
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Table 3 Nondimensionalized frequency parameter A,
(circular cross section, hinged-hinged boundary
condition, K =30)

5, ©=50° ©=110° ©=180°
1 93708 13157 24332

2 23205  7.7508 6.4665

10 3 30.221 12182 9.2605
4 44924 16481 11.450

5 52790  21.283 14.083

1 10.749 13604 25590

2 41306 87294  7.1728

20 3 46.721 20.292 13.429
4 80.829  24.640 18.737

5 90.254 34856  21.032

1 11.288 13739 2.5985

2 48308  9.0942 7.4261

50 3 10596  22.087 14.248
4 11705 39913 22.954

5 179.71 61.805 33.458

1 11.373 13758 2.6043

2 49712 91510  7.4650

100 3 11247 2239% 14.380
4 19793 40880  23.285

5 23417 64472 34144

1 11.395 1.3763 2.6057

2 50.087  9.1654  7.4748

200 3 11435 22474 14.414
4 203.66  41.136 23371

5 31738 65.097 34.324

0.89 throughout the paper. The numbers given in Tables 1
to 4 are the nondimensionalized frequency parameters A

4 =+[pAR'@} [EI . (14)

The eigenvalues computed by the transfer matrix method
(Irie et al.?) are also given for comparison in Table 1,

defined as

which are in excellent agreement with those of present
study.

Eigenvalues are computed with K =30 for various
slenderness ratios s; and curved beam angles ® under
clamped-clamped, hinged-hinged and clamped-hinged
boundary conditions, and lowest 5 eigenvalues for each
boundary condition are listed in Tables 2 to 4. It is shown
that the eigenvalues of the curved beams in Tables 2 to 4
tend to grow larger as the slenderness ratio increases.
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Table 4 Nondimensionalized frequency parameter A,
(circular cross section, clamped-hinged boundary
condition, X =30)

s ®=60° ©=120° ©=180°
1 96368 24265 09011
2 19704 81148  3.5037
10 3 25124 11511 75772
4 37624 15648 92677
5 42520 19702 12,502
1 11796 25842 0.9244
2 35482 94587  3.7888
20 3 39701 19.808  8.6902
4 65654 23278 15168
5 75610 32638 18738
1 12737 26347 09312
2 42300 99891  3.8834
50 3 86345 21858  9.1148
4 99473 37799 16349
5 14214 57472 25455
1 12892 26422 09322
2 43684 10073 3.8976
100 3 91582 22215  9.1814
4 15550 38796  16.546
5 19901 59.682  25.906
1 12931 26441 09325
2 44055 10095  3.9012
200 3 93074 22307  9.1984
4 15958  39.060  16.596
5 24324 60283 26.023

4. Conclusions

The Chebyshev pseudospectral method is applied to the
analysis of out-of-plane free vibration of curved
Timoshenko beams. Numerical examples are provided
for circularly curved beams of circular cross section
under clamped-clamped, hinged-hinged and clamped-
hinged boundary conditions for various slenderness
ratios and curved beam angles. The results under the
clamped-clamped boundary condition are compared with
the solutions by the transfer matrix method and it is
shown that they are in excellent agreement. The title
problem demonstrates the
accuracy as well as the conceptual simplicity of the

rapid convergence and

pseudospectral method.
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Appendix: Constants of Function D, (&)

Al. The clamped-clamped boundary condition for the
Timoshenko beam is given by

w=0, ¢=0, w=0 at &=+]l. (Al)
w=0 and ¢=0 at £ =1 are satisfied by the condition
given in Eq. (10), and the remaining condition =0 at

& =*1 can be satisfied simply by choosing

D2n—l(§)=T2n(§)—T;)(§)
D,,(8)=T,,.(£)-T(¢)
(,,_:],2’...),

(A2)

which can be accomplished by a,=qa,=2,=4,=0.
A2. The hinged-hinged boundary condition is
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M=0
M=0

at £=-1

w=0, ¢=0,
{ Vi oW

w=0, ¢=0,

w=0 and ¢=0 at £ =11 are satisfled by the
condition given in Eq. (10), and the remaining condition
is

_Eldy| _2Eldy|

= = =0.
R dfl,., RO d¢|

M| - (Ad)

£=t1
Using the relationship (8), it is worthwhile to note that

dD,

e 1 Y
13

£=t1

(k=1,2, - ,K) (AS)

is a sufficient condition for the zero-moment condition
(A4). Having the differentiation of the odd numbered
terms of D, (¢) with respect to & equal to zero makes

dr, j
= —2+2qé+a
A (d: c

dDZn-!
dg
(n=12,-)

e (A6)

Eq. (A6) is rewritten as

£=-1

—4n* -2a +a,=0 at
{ n’ ~2a, +a, al 7 (A7)

4n* +2a,+a,=0 at

and we have

a=-2n, a,=0. (A8)
The differentiation of the even numbered terms with

respect to £ makes

LIUY (——dTZ"*' ~142a,8 + a4) =0. (A9)
dg =11 dg =t
Eq. (A9) is also rewritten as
2n+1) -1-2a,+a,=0 at &=-1
(2n )2 a,+a, at & (A10)
(2n+1) -142a,+4a,=0 at ¢&=1,

from which the constants @, and a, are found to be

a,=0, a,=—4n(n+1). (A1)
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A3. The clamped-hinged boundary condition is given by

(A12)

w=0 and ¢=0 at £=+1 are satisfied by the condition
given in Eq. (10), and the remaining condition is satisfied
by the introduction

D,=0 at &=-1
ﬂ=0 at £=1.
dg

(A13)

Using the relationships of Eq. (11), the condition for the
odd numbered terms is given by

D, P (Tzn =T+ a1§2 + a2§1¢=_|
=q,-a,=0
D T (A14)
Dol (—d 2 1 2aé+ azJ
d¢ |, \de Ny
=4n’ +2a,+a, =0,
from which we have
2
al=az=~4% (A15)

For the even numbered terms the condition is expressed

by
D =(1,. -T 2
2,,|§:V1 ‘( 2n+1 |+a3§ +a4§1§=_|
=a,-a,=0
dD dr, (al6)
it .1 =[—————2"*‘ —1+2a3§+a4j
dé £=1 dé 5=1
=(2n+1)2—1+2a3+a4=0,
from which we have
b 4n(n+1) (A17)
3 4 3 N
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