• Title/Summary/Keyword: hinge loss

Search Result 27, Processing Time 0.019 seconds

Audio Fingerprint Binarization by Minimizing Hinge-Loss Function (경첩 손실 함수 최소화를 통한 오디오 핑거프린트 이진화)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.415-422
    • /
    • 2013
  • This paper proposes a robust binary audio fingerprinting method by minimizing hinge-loss function. In the proposed method, the type of fingerprints is binary, which is conducive in reducing the size of fingerprint DB. In general, the binarization of features for fingerprinting deteriorates the performance of fingerprinting system, such as robustness and discriminability. Thus it is necessary to minimize such performance loss. Since the similarity between two audio clips is represented by a hinge-like function, we propose a method to derive a binary fingerprinting by minimizing a hinge-loss function. The derived hinge-loss function is minimized by using the minimal loss hashing. Experiments over thousands of songs demonstrate that the identification performance of binary fingerprinting can be improved by minimizing the proposed hinge loss function.

SVC with Modified Hinge Loss Function

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.905-912
    • /
    • 2006
  • Support vector classification(SVC) provides more complete description of the linear and nonlinear relationships between input vectors and classifiers. In this paper we propose to solve the optimization problem of SVC with a modified hinge loss function, which enables to use an iterative reweighted least squares(IRWLS) procedure. We also introduce the approximate cross validation function to select the hyperparameters which affect the performance of SVC. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

Sparse kernel classication using IRWLS procedure

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.749-755
    • /
    • 2009
  • Support vector classification (SVC) provides more complete description of the lin-ear and nonlinear relationships between input vectors and classifiers. In this paper. we propose the sparse kernel classifier to solve the optimization problem of classification with a modified hinge loss function and absolute loss function, which provides the efficient computation and the sparsity. We also introduce the generalized cross validation function to select the hyper-parameters which affects the classification performance of the proposed method. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF

Seismic performance assessment of deteriorated reinforced concrete columns using a new plastic-hinge element

  • Tae-Hoon Kim;Hosung Jung
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.139-148
    • /
    • 2023
  • The purpose of this paper is to numerically assess the seismic performance of deteriorated reinforced concrete columns using a new plastic-hinge element. Developing a three dimensional (3D) nonlinear model can be difficult and computationally complex, and there can be problems applying it in the field. Thus, to solve these problems, a plastic-hinge element that could considers the shear deformation of deteriorated reinforced concrete columns was proposed. The developed element was based on the Timoshenko beam model and used two nodes with six degrees of freedom and a zero-length element. Moreover, the developed model could consider the combined effects of corrosion, as demonstrated by the reduced reinforcement area and the loss of bond. Consequently, the numerical procedures developed for evaluating the seismic performance of deteriorated columns were validated by comparing the verification results.

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.

Behaviour of the Fretting Wear and Corrosion Characteristics on a Hinge Material (힌지재료의 부식특성 및 찰과마멸 거동)

  • Kwak Nam-In;Lim Uh-Joh;Lee Jong-Rark
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.39-44
    • /
    • 1999
  • In the study, corrosion characteristics under various corrosion environments(neutral solution, acid solution), for various hinge materials(SM20C, BsC3 and STC4H), were investigated by immersion test, and the behaviour of fretting wear under atmosphere was studied. In immersion test, corrosion potential of those materials showed to be noble in the sequence of $0.5\%HNO_3$> underground water> $0.5\%\;H_2SO_4$ solution, and potential of a sole material, except BsC3, was more noble than these of mixed materials. In same material SM20C, the fretting wear loss of rotary materials increased about 1.9 times to that of moving materials, because of surface hardening by frictional force.

  • PDF

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.

WHEN CAN SUPPORT VECTOR MACHINE ACHIEVE FAST RATES OF CONVERGENCE?

  • Park, Chang-Yi
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.367-372
    • /
    • 2007
  • Classification as a tool to extract information from data plays an important role in science and engineering. Among various classification methodologies, support vector machine has recently seen significant developments. The central problem this paper addresses is the accuracy of support vector machine. In particular, we are interested in the situations where fast rates of convergence to the Bayes risk can be achieved by support vector machine. Through learning examples, we illustrate that support vector machine may yield fast rates if the space spanned by an adopted kernel is sufficiently large.

Multiclass Support Vector Machines with SCAD

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.655-662
    • /
    • 2012
  • Classification is an important research field in pattern recognition with high-dimensional predictors. The support vector machine(SVM) is a penalized feature selector and classifier. It is based on the hinge loss function, the non-convex penalty function, and the smoothly clipped absolute deviation(SCAD) suggested by Fan and Li (2001). We developed the algorithm for the multiclass SVM with the SCAD penalty function using the local quadratic approximation. For multiclass problems we compared the performance of the SVM with the $L_1$, $L_2$ penalty functions and the developed method.