• Title/Summary/Keyword: higher-order shear theory

Search Result 395, Processing Time 0.019 seconds

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.65-84
    • /
    • 2016
  • This paper investigates the buckling behavior of shear deformable piezoelectric (FGP) nanoscale beams made of functionally graded (FG) materials embedded in Winkler-Pasternak elastic medium and subjected to an electro-magnetic field. Magneto-electro-elastic (MEE) properties of piezoelectric nanobeam are supposed to be graded continuously in the thickness direction based on power-law model. To consider the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of the embedded piezoelectric nanobeams are obtained. A Navier-type analytical solution is applied to anticipate the accurate buckling response of the FGP nanobeams subjected to electro-magnetic fields. To demonstrate the influences of various parameters such as, magnetic potential, external electric voltage, power-law index, nonlocal parameter, elastic foundation and slenderness ratio on the critical buckling loads of the size-dependent MEE-FG nanobeams, several numerical results are provided. Due to the shortage of same results in the literature, it is expected that the results of the present study will be instrumental for design of size-dependent MEE-FG nanobeams.

Nonlinear thermal buckling of bi-directional functionally graded nanobeams

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.669-682
    • /
    • 2019
  • We in this article study nonlinear thermal buckling of bi-directional functionally graded beams in the theoretical frameworks of nonlocal strain graded theory. To begin with, it is assumed that the effective material properties of beams vary continuously in both the thickness and width directions. Then, we utilize a higher-order shear deformation theory that includes a physical neutral surface to derive the size-dependent governing equations combining with the Hamilton's principle and the von $K{\acute{a}}rm{\acute{a}}n$ geometric nonlinearity. It should be pointed out that the established model, containing a nonlocal parameter and a strain gradient length scale parameter, can availably account for both the influence of nonlocal elastic stress field and the influence of strain gradient stress field. Subsequently, via using a easier group of initial asymptotic solutions, the corresponding analytical solution of thermal buckling of beams is obtained with the help of perturbation method. Finally, a parametric study is carried out in detail after validating the present analysis, especially for the effects of a nonlocal parameter, a strain gradient length scale parameter and the ratio of the two on the critical thermal buckling temperature of beams.

Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation

  • Guellil, Moustafa;Saidi, Hayat;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Hussain, Muzamal;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • In this paper, a higher order shear deformation theory for bending analysis of functionally graded plates resting on Pasternak foundation and under various boundary conditions is exposed. The proposed theory is based on the assumption that porosities can be produced within functionally graded plate which may lead to decline in strength of materials. In this research a novel distribution of porosity according to the thickness of FG plate are supposing. Governing equations of the present theory are derived by employing the virtual work principle, and the closed-form solutions of functionally graded plates have been obtained using Navier solution. Numerical results for deflections and stresses of several types of boundary conditions are presented. The exactitude of the present study is confirmed by comparing the obtained results with those available in the literature. The effects of porosity parameter, slenderness ratio, foundation parameters, power law index and boundary condition types on the deflections and stresses are presented.

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Thermal frequency analysis of FG sandwich structure under variable temperature loading

  • Sahoo, Brundaban;Mehar, Kulmani;Sahoo, Bamadev;Sharma, Nitin;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.57-74
    • /
    • 2021
  • The thermal eigenvalue responses of the graded sandwich shell structure are evaluated numerically under the variable thermal loadings considering the temperature-dependent properties. The polynomial type rule-based sandwich panel model is derived using higher-order type kinematics considering the shear deformation in the framework of the equivalent single-layer theory. The frequency values are computed through an own home-made computer code (MATLAB environment) prepared using the finite element type higher-order formulation. The sandwich face-sheets and the metal core are discretized via isoparametric quadrilateral Lagrangian element. The model convergence is checked by solving the similar type published numerical examples in the open domain and extended for the comparison of natural frequencies to have the final confirmation of the model accuracy. Also, the influence of each variable structural parameter, i.e. the curvature ratios, core-face thickness ratios, end-support conditions, the power-law indices and sandwich types (symmetrical and unsymmetrical) on the thermal frequencies of FG sandwich curved shell panel model. The solutions are helping to bring out the necessary influence of one or more parameters on the frequencies. The effects of individual and the combined parameters as well as the temperature profiles (uniform, linear and nonlinear) are examined through several numerical examples, which affect the structural strength/stiffness values. The present study may help in designing the future graded structures which are under the influence of the variable temperature loading.

Static analysis of nonlinear FG-CNT reinforced nano-composite beam resting on Winkler/Pasternak foundation

  • Mostefa Sekkak;Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Mohamed Bourada;Mahmoud M Selim;Hosam A. Saad
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.509-519
    • /
    • 2024
  • In this study, the static analysis of carbon nanotube-reinforced composites (CNTRC) beams resting on a Winkler-Pasternak elastic foundation is presented. The developed theories account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. To study the effect of carbon nanotubes distribution in functionally graded (FG-CNT), we introduce in the equation of CNT volume fraction a new exponent equation. The SWCNTs are assumed to be aligned and distributed in the polymeric matrix with different patterns of reinforcement. The rule of mixture is used to describe the material properties of the CNTRC beams. The governing equations were derived by employing Hamilton's principle. The models presented in this work are numerically provided to verify the accuracy of the present theory. The analytical solutions are presented, and the obtained results are compared with the existing solutions to verify the validity of the developed theories. Many parameters are investigated, such as the Pasternak shear modulus parameter, the Winkler modulus parameter, the volume fraction, and the order of the exponent in the volume fraction equation. New results obtained from bending and stresses are presented and discussed in detail. From the obtained results, it became clear the influence of the exponential CNTs distribution and Winkler-Pasternak model improved the mechanical properties of the CNTRC beams.

An experimental and analytical study of the sound wave propagation in beam formed from rubberized concrete material

  • Salhi Mohamed;Safer Omar;Dahmane Mouloud;Hassene Daouadji Nouria;Alex Li;Benyahia Amar;Boubekeur Toufik;Badache Abdelhak
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The amount of wave propagation through a rubber concrete construction is the subject of the current investigation. Rubber tire waste was used to make two different types of cement mixtures. One type contains sand substitute in amounts ranging from 15% to 60% of the total volume, while the other has gravel with diameters of 3/8 and 8/15 and 15% sand in the same mixture. A wide variety of concrete forms and compositions were created, and their viscous and solid state characteristics were assessed, along with their short-, medium-, and long-term strengths. Diffusion, density, mechanical strength resistance to compressive force, and ultrasound wave propagation were also assessed. The water-to-cement ratio and plasticizer were used in this investigation. In the second part of the study, an analytical model is presented that simulates the experimental model in predicting the speed of waves and the frequencies accompanying them for this type of mixture. Higher order shear deformation beam theory for wave propagation in the rubberized concrete beam is developed, considering the bidirectional distribution, which is primarily expressed by the density, the Poisson coefficient, and Young's modulus. Hamilton's concept is used to determine the governing equations of the wave propagation in the rubberized concrete beam structure. When the analytical and experimental results for rubber concrete beams were compared, the outcomes were very comparable. The addition of rubber gravel and sandy rubber to the mixture both resulted in a discernible drop in velocities and frequencies, according to the data.

Progressive failure of symmetrically laminated plates under uni-axial compression

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.433-450
    • /
    • 1997
  • The objective of this work is to predict the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, flat, square symmetric laminates under the action of uni-axial compression. Two progressive failure analyses, one using Hashin criterion and the other using Tensor polynomial criteria, are used in conjunction with the finite element method. First order shear deformation theory and geometric nonlinearity in the von Karman sense have been employed. Five different types of lay-up sequence are considered for laminates with all edges simply supported. In addition, two boundary conditions, one with all edges fixed and other with mixed boundary conditions for $(+45/-45/0/90)_{2s}$ quasi-isotropic laminate have also been considered to study the effect of boundary restraints on the failure loads and the corresponding modes of failure. A comparison of linear and nonlinear results is also made for $({\pm}45/0/90)_{2s}$ quasi-isotropic laminate. It is observed that the maximum difference between the failure loads predicted by various criteria depend strongly on the laminate lay-ups and the flexural boundary restraints. Laminates with clamped edges are found to be more susceptible to failure due to the transverse shear and delamination, while those with the simply supported edges undergo total collapse at a load slightly higher than the fiber failure load.