• Title/Summary/Keyword: higher-order element formulation

Search Result 84, Processing Time 0.024 seconds

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.

The MIN-N family of pure-displacement, triangular, Mindlin plate elements

  • Liu, Y. Jane;Riggs, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.297-320
    • /
    • 2005
  • In recent years the pure displacement formulation for plate elements has not been as popular as other formulations. We revisit the pure displacement formulation for shear-deformable plate elements and propose a family of N-node, displacement-compatible, fully-integrated, pure-displacement, triangular, Mindlin plate elements, MIN-N. The development has been motivated by the relative simplicity of the pure displacement formulation and by the success of the existing 3-node plate element, MIN3. The formulation of MIN3 is generalized to obtain the MIN-N family, which possesses complete, fully compatible kinematic fields, in which the interpolation functions for transverse displacement are one degree higher than those for rotations. General element-level formulas for the thin-limit Kirchhoff constraints are developed. The 6-node, 18 degree-of-freedom element MIN6, with cubic displacement and quadratic rotations, is implemented and tested extensively. Numerical results show that MIN6 exhibits good performance for both static and dynamic analyses in the linear, elastic regime. The results illustrate that the fully-integrated MIN6 element has excellent performance in the thin limit, even for coarse meshes, and that it does not require shear relaxation.

An efficient computational method for stress concentration problems

  • Shrestha, Santosh;Ohga, Mitao
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.613-629
    • /
    • 2006
  • In this paper a recently developed scaled boundary finite element method (SBFEM) is applied to simulate stress concentration for two-dimensional structures. In addition, a simple and independent formulation for evaluating the coefficients, not only of the singular term but also higher order non-singular terms, of the stress fields near crack-tip is presented. The formulation is formed by comparing the displacement along the radial points ahead of the crack-tip with that of standard Williams' eigenfunction solution for the crack-tip. The validity of the formulation is examined by numerical examples with different geometries for a range of crack sizes. The results show good agreement with available solutions in literatures. Based on the results of the study, it is conformed that the proposed numerical method can be applied to simulate stress concentrations in both cracked and uncracked structure components more easily with relatively coarse and simple model than other computational methods.

Higher Order Quadrilateral Plate Bending Finite Element (고차(高次) 판(板) 사각형(四角形) 유한요소(有限要素))

  • Shin, Young Shik;Shin, Hyun Mook;Kim, Myung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.25-32
    • /
    • 1988
  • A formulation of an isoparametric quadrilateral higher-order plate bending finite element is presented. The 8-noded 28-d.o.f. plate element has been degenerated from the three-dimensional continuum by introducing the plate assumptions and considering higher-order in-plane displacement profile. The element characteristics have been derived by the Galerkin's weighted residual method and computed by using the selective reduced integration technique to avoid shear-locking phenomenon. Several numerical examples are given to demonstrate the accuracy and versatility of the proposed quadrilateral higher-order plate bending element over the other existing plate finite elements in both static and dynamic analyses.

  • PDF

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory

  • Allah, Mohamed Janane;Timesli, Abdelaziz;Belaasilia, Youssef
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The free and forced nonlinear dynamic behaviors of Porous Functionally Graded Material (PFGM) plates are examined by means of a High-Order Implicit Algorithm (HOIA). The formulation is developed using the Third-order Shear Deformation Theory (TSDT). Unlike previous works, the formulation is written without resorting to any homogenization technique neither rule of mixture nor considering FGM as a laminated composite, and the distribution of the porosity is assumed to be gradually variable through the thickness of the PFGM plates. Using the Hamilton principle, we establish the governing equations of motion. The Finite Element Method (FEM) is used to compute approximations of the resulting equations; FEM is adopted using a four-node quadrilateral finite element with seven Degrees Of Freedom (DOF) per node. Nonlinear equations are solved by a HOIA. The accuracy and the performance of the proposed approach are verified by presenting comparisons with literature results for vibration natural frequencies and dynamic response of PFGM plates under external loading. The influences of porosity volume fraction, porosity distribution, slenderness ratio and other parameters on the vibrations of PFGM plate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of the PFGM plate.

Geometrically Nonlinear Analysis of Higher Order Plate Bending Finite Element (고차 판 유한요소의 기하학적 비선형 해석)

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 1988
  • A higher order plate bending finite element using cubic in-plane displacement profiles is proposed for geometrically nonlinear analysis of thin and thick plates. The higher order plate bending element has been derived from the three dimensional plate-like continuum by discretization of the equations of motion by Galerkin weighted residual method, together with enforcing higher order plate assumptions. Total Lagrangian formulation has been used for geometrically nonlinear analysis of plates and consistent linearization by Newton-Raphson method has been performed to solve the nonlinear equations. The element characteristics have been computed by, selective reduced integration technique using Gauss quadrature to avoid shear locking phenomenon in case of extremely thin plates. Several numerical examples were solved with FEAP macro program to demonstrate versatility and accuracy of the present higher order plate bending element.

  • PDF

Free Vibration Analysis of Arches Using Higher-Order Mixed Curved Beam Elements (고차 혼합 곡선보 요소에 의한 아치의 자유진동해석)

  • Park Yong Kuk;Kim Jin-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.18-25
    • /
    • 2006
  • The purpose of this research work is to demonstrate a successful application of hybrid-mixed formulation and nodeless degrees of freedom in developing a very accurate in-plane curved beam element for free vibration analysis. To resolve the numerical difficulties due to the spurious constraints, the present element, based on the Hellinger-Reissner variational principle and considering the effect of shear deformation, employed consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees. The stress parameters were eliminated by the stationary condition, and the nodeless degrees were condensed by Guyan Reduction. Several numerical examples indicated that the property of the mass matrix as well as that of the stiffness matrix have a great effect on the numerical performance. The element with consistent mass matrix produced best results on convergence and accuracy in the numerical analysis of Eigenvalue problems. Also, the higher-order mixed curved beam element showed a superior numerical behavior for the free vibration analyses.