• Title/Summary/Keyword: higher order theory

Search Result 844, Processing Time 0.032 seconds

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

Time-Delay Estimation using Wavelet Theory and Higher-Order Statistics (웨이블릿 이론과 고차통계 처리기법을 이용한 시간지연 추정)

  • 차용철;김용남;정지현;남상원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.630-635
    • /
    • 1998
  • The objective of this paper is to propose a new efficient technique for the estimation of time-delay parameters using wavelet theory and third-order cumulants, yielding good performance even in the case of low SNR. In particular, band-limited non-Gaussian signals with non-zero skewness and spatially correlated Gaussian noises are considered here. The approach is based on the fact that the effects of spatially correlated Gaussian noises on time-delay estimation can be reduced by using the projection sequences (based on the redundant wavelet decomposition) of given measurements in the higher-order cumulant domain. Finally, the performance of the proposed approach is demonstrated using simulations.

  • PDF

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

Wave propagation of bi-directional porous FG beams using Touratier's higher-order shear deformation beam theory

  • Slimane Debbaghi;Mouloud Dahmane;Mourad Benadouda;Hassen Ait Atmane;Nourddine Bendenia;Lazreg Hadji
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • This work presents an analytical approach to investigate wave propagation in bi-directional functionally graded cantilever porous beam. The formulations are based on Touratier's higher-order shear deformation beam theory. The physical properties of the porous functionally graded material beam are graded through the width and thickness using a power law distribution. Two porosities models approximating the even and uneven porosity distributions are considered. The governing equations of the wave propagation in the porous functionally graded beam are derived by employing the Hamilton's principle. Closed-form solutions for various parameters and porosity types are obtained, and the numerical results are compared with those available in the literature.The numerical results show the power law index, number of wave, geometrical parameters and porosity distribution models affect the dynamic of the FG beam significantly.

Lagrangian Motion of Water Particles in Stokes Waves (스토우크스파에서의 수입자 운동)

  • Kim, Tae-In;Hwang, Im-Koo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.187-200
    • /
    • 1992
  • A general scheme is developed to determine the Langrangian motions of water particles by the Eulerian velocity at their mean positions by using Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the orbital motions and the mass transport velocity including the effects of higher-order wave components are determined. The fifth-order approximation of orbital motion gives very good predictions of actual water particle motion in Stokes fifth-order wave theory except near the free-surface. The fifth-order theory predicts the mass transport velocity less than that given by the existing second-order theory over the whole water depth.

  • PDF

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory

  • Allah, Mohamed Janane;Timesli, Abdelaziz;Belaasilia, Youssef
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The free and forced nonlinear dynamic behaviors of Porous Functionally Graded Material (PFGM) plates are examined by means of a High-Order Implicit Algorithm (HOIA). The formulation is developed using the Third-order Shear Deformation Theory (TSDT). Unlike previous works, the formulation is written without resorting to any homogenization technique neither rule of mixture nor considering FGM as a laminated composite, and the distribution of the porosity is assumed to be gradually variable through the thickness of the PFGM plates. Using the Hamilton principle, we establish the governing equations of motion. The Finite Element Method (FEM) is used to compute approximations of the resulting equations; FEM is adopted using a four-node quadrilateral finite element with seven Degrees Of Freedom (DOF) per node. Nonlinear equations are solved by a HOIA. The accuracy and the performance of the proposed approach are verified by presenting comparisons with literature results for vibration natural frequencies and dynamic response of PFGM plates under external loading. The influences of porosity volume fraction, porosity distribution, slenderness ratio and other parameters on the vibrations of PFGM plate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of the PFGM plate.

Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.269-283
    • /
    • 2016
  • A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick function ally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

Free vibrations of laminated composite plates using a novel four variable refined plate theory

  • Sehoul, Mohammed;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.603-613
    • /
    • 2017
  • In this research, the free vibration response of laminated composite plates is investigated using a novel and simple higher order shear deformation plate theory. The model considers a non-linear distribution of the transverse shear strains, and verifies the zero traction boundary conditions on the surfaces of the plate without introducing shear correction coefficient. The developed kinematic uses undetermined integral terms with only four unknowns. Equations of motion are obtained from the Hamilton's principle and the Navier method is used to determine the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical examples studied using the present formulation is compared with three-dimensional elasticity solutions and those calculated using the first-order and the other higher-order theories. It can be concluded that the present model is not only accurate but also efficient and simple in studying the free vibration response of laminated composite plates.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.