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Lagrangian Motion of Water Particles in Stokes Waves
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Abstract J A general scheme is developed to determine the Langrangian motions of water particles
by the Eulerian velocity at their mean positions by using Taylor's theorem. Utilizing the Stokes
finite-amplitude wave theory, the orbital motions and the mass transport velocity including the effects
of higher-order wave components are determined. The fifth-order approximation of orbital motion
gives very good predictions of actual water particle motion in Stokes fifth-order wave theory except
near the free-surface. The fifth-order theory predicts the mass transport velocity less than that given
by the existing second-order theory over the whole water depth.
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1. INTRODUCTION

It is well known that the Lagrangian motion of
water particles under wave action results in mass
transport in the direction of wave propagation in
open channels. In general, the mass transport velo-
city of a fluid particle is a linear sum of two quan-
tities known as the Stokes drift and the mean Eule-
rian streaming (Mei, 1983; Craik, 1982). Stokes drift
is a general consequence of the irrotational motion
of the fluid (Wehausen, 1960) while the mean Eule-
rian streaming arises due to the viscosity in fluid
bounded by a free surface and solid boundaries.

There are two reference coordinate frames that
may be used to examine the mass transport due
to wave motion: (1) the Eulerian frame which uses
a fixed point to observe the mean flux of mass;
and (2) the Lagrangian frame which move with the
indvidual water particles. The theoretical solutions

for the mass transport in progressive waves of per-
manent-type can be grouped into two main catego-
ries. The first one is derived for an ideal fluid by
using a finite-amplitude wave theory, while the se-
cond results from considering the viscous effects at
the bottom and the free-surface boundaries.

In the first category, Stokes (1847) was the first
to recognize that in an inviscid, irrotational progres-
sive wave, the fluid particles possess, apart from
their orbital motion, a steady drift velocity of 0{(ak)’}
in the direction of wave progagation (k=2n/L). The
magnitude of this drift is given by

H ok

= 1
§ sinh’kh M

uy, - cosh2k(h+vy)
in which u, is the mass transport velocity in the
Lagrangian reference frame: H, w, and k are the
wave height, the wave frequency, and the wave nu-

mber, respectively, and h is the depth of the water
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channel. The vertical distance, y, is measured posi-
tive up from the still water level.

The existence of this steady drift under small am-
plitude progressive waves was proved by Rayleigh
(1876) for infinitely deep fluid, and later by Ursell
(1953) for finite depth. Skjelbreia (1959) investigated
the Lagrangian motion of water particles for Stokes
third-order waves. Up to third-order, the Lagrangian
mass transport velocity is still given by Eq. (1) with
4a’ (a=first-order waves amplitude) instead of H”.
Dalrymple (1976) calculated numerically the mass
transport velocity in an Eulerian refernce frame by
using the Stream-function wave theory presented by
Dean (1974). Wang er al. (1982) carried out the same
numerical calculation in the Lagrangian reference
frame. These inviscid theories for mass transport
may be applied with fair accuracy in deep water
or during a time not long after the onset of wave
motion in which the viscous effects are negligible
in core flow of the fluid outside the boundary layer.
As time progresses, however, vorticity is generated
in the boundary layers at the free surface and at
the bottom which then diffuses inward toward the
core of the fluid and the mean Eulerian streaming
should be added to the Stokes drift.

Several experiments have been conducted in wave
flumes in order to confirm the existence of a mean
drift velocity profile. The Lagrangian mass transport
velocity profiles over the entire water depth were
measured by tracing the motion of neutrally buoy-
ant particles. Data have been measured for a flat
bottom by Caligny (1878), U.S. Beach Erosion
Board (1941), Russell and Osorio (1958), Mei et al.
(1972), Tsuchiya er al (1980), and for a sloping
beach by Bijker er al (1974) and Wang er al. (1982).

Measured data show considerable scatter even
though the vertical mass transport velocity profiles
show some resemblance to Eq. (1) in deep water.
The possible reasons for discrepancies between
theories and experimental results, and scatter in ex-
periments may be many: such as the existence of
higher harmonic waves and beach reflections, the
influence of side walls and bottom roughness, and
SO on.

This research was initiated to extend (1) the Skje-
Ibreia’s (1959) 3rd-order mathematical expression of
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Fig. 1. Definition sketch: Lagrangian motion of water pa-
rticle under progressive wave of finite amplituc..
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the Lagrangin motion of water particles in Stokes
wave up to Sth-order, and (2) the existing inviscid
mass transport model of Eq. (1) to include the effe-
cts of higher-6rder wave components. Recently, Kim
and Hudspeth (1988) presented an extended expres-
sion for the mass transport velocity for 5th-order
Stokes waves. This paper is a detailed presentation
of their extended model, and includes some new
findings concerning the behavior of water mass in
progressive waves.

2. MATHEMATICAL FORMULATION

Consider a particle initially located at point P(x,.
y,) at t=0 in Fig. 1, and examine the particle over
one wave period. It is assumed that the coordinate
of the mean particle position, (X,y), is stationary over
one wave period. The coordinate (€C) represents
the particle displacements with respect to the mean
particle position. Let u/(x.y..t) and vi(X.y.t)
represent the horizontal and vertical component of
the Lagrangian velocity of the particle at time t'.

Let the Lagrangian and Eulerian velocity vectors
of the water particles be denoted by U, and 1, res-
pectively, i.c.,

W =u, i+vi . u=uitvj )

The Lagrangian velocity of the particle, u,, may be
related to the Eulerian velocity, U, by

1
u(X,. Yo ty=u(x, + ﬁ )uz_(x). Yo t)dY,

vt ﬁ) Vi (X0 Vo 1), 1) 3

Using the relationships, x,=x+&,.y,=y+{,. and
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noting that

&=¢,+ f( ’)UI.dt’: J’ 'uLdt’. {=§+ J’ :)det’: f [v,_dt’. 4)

the Lagrangian velocity of the water particle is rela-
ted to the Eulerian velocity at the mean position
by

U(X,n Vor H=U(X+ f W (Xo, Yoo L)Y,
y+ j Vi Yo O 1) )

in which f’u,,(xa, v, t')dt’" and f/v,_(x(,, Yo t')dt’ represent
the integrals evaluated at time t, since the values
of the integrals evaluated at time 0 are canceled
by & and . respectively, in Eq. (4).

By Taylor’s theorem, the right hand side of Eq.
(5) may be expanded about the mean position (x,y)
according to

. ES n 1
uy (Xm Yon t): z Z

a0 =0 (n—=n111

J"u(X.y. 1)
ox" ' gy

[ f Ui (Ko Yor t’)dt']n B UIVL(X«H Yo t')dt'][ ®)

In Eq. (6). the Lagrangian velocity components
W% Vo ") and vi(X.y..t") are unknown, and can
be related to the Eulerian velocity components at
the mean position according to Eq. (6) with t and
t" replaced by t' and t", respectively.

Similarly, the Lagrangian velocity components in
the right hand side of the resulting equation may
be further related to the Eulerian velocity compone-
nts at the mean position. By substituting the resul-
ting expressions for the Lagrangian velocity compo-
nents into Eq. (6) successively, the Lagrangian velo-
city of the water particle may be related solely to
the Eulerian velocity at the mean position to the
desired accuracy.

The mass transport velocity may be defined
by

I o0

U/:?J’()U[dl. V]:?ﬁ)vl,dt (7)
in which T=2n/w being the wave period.
3. ORBITAL MOTION AND MASS TRA-

NSPORT VELOCITY IN STOKES
WAVES

3.1 Stokes Wave Theory
For Stokes waves, the Eulerian horizontal and
vertical velocity, u and v, are given by

u=C Z a0 v=C v (8)

in which K is the order of Stokes wave theory being
considered, and C= the wave celerity of the wave
represented by the Kth-order wave theory. The hori-
zontal velocity components take the form

w=F, cosh ks cosB, .u=F, cosh2ks cos20
su=F; cosh ks cos®+F; cosh3ks cos30 9)
su=F, cosh2ks cos20+F,; coshdks cosdd
su=Fs cosh ks cosB+Fis cosh3ks cos30

+Fs cosh5ks cos56

correct to fifth-order. The vertical velocity compone-
nts take the same form with cosh(- ) and cos(- )
replaced by sinh(- ) and sin( - ). respectively. In
Egs. (9), 6=kx—wt, s=y+h, and k is the wave nu-
mber.

For the present study, the fifth-order Stokes wave
theory presented by Skjelbreia and Hendrickson
(1960) is utilized. The coefficients in Eqs. (9) are
related with those given by Skjebreia and Herdiric-
kson (1960) as Fi=g A, F2=2¢" An, F3=3¢" Ay,
Fin=¢' An Fi=4e* Ay Fu=2¢" Ay Fi=5¢° Ass,
Fis=¢' Ai.. Fis=3¢" Ao Nishmura e al. (1977)
pointed out a minor mistake in the expression for
the fourth-order celerity in the solution given by
Skjelbreia and Hendricken (1960) [the sign of
+2592 C* in the expression of C, should be cha-
nged into —2592 C¥]. This correction was accoun-
ted in calculating the wave number, k. and the per-
turbation parameter, g(=ka), in the present study.

The Lagrangian horizontal and vertical velocity
under Kth-order wave, u; and v;, are also assumed
to be given by

K K
w=CY w: v=C2 v (10)
n o1 n 1

After the Lagrangian velocity components in Eq.
(6) arc cxpressed by the Eulerian velocity compone-
nts by successive expansions, the Eulerian velocity
components given by Eq. (8) are substituted into
Eq. (6). By retaining the terms up to Kth-order in
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Eq. (6), the Lagrangian velocity under a Kth-order
Stokes wave may be expressed entirely by the Eule-
rian quantities. When this procedure is carried out
for Stokes wave theory at the different orders, the
number of terms in the Eulerian quantity increases
rapidly with order. The equations for Lagrangian
velocity contain four terms for a Stokes second-or-
der wave, and successively 16, 64, and finally 292
terms for a Stokes fifth-order wave.

3.2 Second-Order Theory

In the Stokes second-order wave theory, the wave
height H=2a, and the wave celerity is given by
C=C, tanh kh, C,=g/o being the deep water linear
wave celerity. The Lagrangian velocity, U, of the
water particle is approximated by the Eulerian velo-
city, U, according to

ﬁL:C(|ﬁL+2ﬁL):C(|ﬁ+|ﬁ llu dt’+1ﬁJ.[]th’) (11)

Substitution of Egs. (9) for u and i into Eq. (11)
yields

wX.v..t) ~  Hk
C, ~ 2cosh kh
(Hk) [ 3
4sinh 2kh L2sinh’*kh

cosh k s cos

cosh 2k s— 1] -cos20
+ “2onh 2k © osh 2k s (12a)

and

Vi Yo t) __ Hk
C, 2cosh kh
3(HkPsinh2ks | .-
16sinh*kh -cosh kh sin20 (12b)

sinh ks siné

in which s=y+h, and 6=kx—ot

Equation (12a) states that the water particles tra-
vel, apart from their harmonic velocity components,
with a steady-drift velocity of 0{(Hk)’} in the direc-
tion of wave propagation. Substitution of Egs. (12)
into Egs. (4) yields

H L
=———————coshkssi
& >sinh osh k s sinf

_ H%k [ 3
l6sinh’kh L 2sinh?kh

cosh 2k s— I]Sinze

2

H’k .
+
(1) ——CSSinhz h osh 2ks (13a)

and

H . -
{= mmh ks cosf

3HXk - ~
msmh 2ks cos20 (13b)
The components of the mass transport velocity
for the Stokes second-order wave given by Egs. (7)

18

up _ (Hky -
C. ~ Ssinh 2kh cosh 2k s (14a)
and
Vi
— =0 14b
C (14b)

In deep water, Eq. (14a) reduces to

—

ur

Co

1 -

=—(Hk)ye* (15)
4

which was initially reported by Stokes (1847).

3.3 Third-Order Theory

For a Stokes wave at third-order, the first-order
wave amplitude, a, and the wave number, k, must
be determined for given wave height, H, and angu-
lar frequency, w, from two equations given by

o?’=gk tanhkh (1+¢* C/) (16a)
2 3
H:¥(g+g‘ B:3) (16b)

From Eq. (16a), the wave celerity, C, for the third-
order is given as C=C, tanhkh(1+¢&’C/’). The coef-
ficients C," and Bas given by Skjelbreia and Hendri-
kson (1960) may be found in Appendix I

By collecting the terms up to third-order in Eq.
(6), the Lagrangian velocity components are given
by

u_L(_ng"‘t)_ = [1 +¢ Cl']tanh kh{[(F] +F;— %Flz)

cosh ks+ % (F\*+ 10F,)cosh 3k §]C0$9
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2
i

F _
5 )00329

+ (F] cosh2k s—

F ) o
+ [Zl (F\*— SF)cosh ks+ F; cosh 3k s}cos39

+ le [cosh2k s—(wt)F; cosh ks cosh2ks sin 9]}
(17a)
2 t 3 '
L"él—) =[1+¢C, Jtanh kh

F?y . _

{[(Fl +Fu— Y )Smh ks
F . - )
+ _81 (6F>—F)sinh3k s] sinf+ F> sinh2ks-sin26

_ 3 7 _
+(F; sinh3k s— 4 F,F, sinhk s)sin30

F/
2

+(mt) sinh ks-cosh 2ks cose} (17b)

The horizontal and vertical displacements of the
water particles from their mean positions, § and
¢, determined by Egs. (4), are given by

&= —%RF, +F|3—F—813 )cosh ks

+ %(31:12‘*’ 10F;)cosh3k §]sin6
1 F27. .-
K [F: cosh2k s 5 ]smze
[ P o
- i{[z (F\*— 5F,)cosh ks+ F; cosh3k s]s1n39

+ % Fi¥cosh2k s—F; coshk s* cosh2k s-cos8)

(18a)
and
1 ( k) N
= (F+Fu— 2k )
¢ k|: I 13 8 sinh ks
F, | . A
+ §(F,~+ 6F-)sinh3k s:'cose
+ e F> sinh2Kks- cos20
x b2 $*COS
1 . -3 . ;
+ ™ [F; sinh3k s— ZFIFZ sinh ks:lcos39
Ct .. _ . =
— B3 F’sinh ks-cosh2k s-sin 0 (18b)

The third-order Lagrangian velocity has been re-

ported by Skjelbreia (1959) by use of the Taylor
series expansion scheme in a different manner. He
substituted x+& for x and s+& for s in Egs. (9)
for the horizontal and vertical components of the
orbital velocities and expanded. The expressions for
horizontal and vertical particle positions, £ and ¢,
are found by successive approximations. Equations
(17) and (18) are identical to the expressions repor-
ted by Skjelbreia (1959) [also quoted by Wiegel
(1964)] provided that his expression 3F? in sinf
term in Eq. (18a) is changed into 3F,% This seems
to be a typogrpahical error, for the term in question
should be a quantity of 0(g?). In addition, Skjelbreia
(1959) missed Fy; into his expression for both sin
term in Eq. (18a) and cosB term in Eq. (18b), which
should be included to be mathematically consistent.
The components of the mass transport velocity
for a Stokes wave at third-order according to the
definition given by Eqgs. (7) is determined to be

u o s F?
T":(H—s-Cl Jtanh kh[ 2‘

o

cosh2k s

F*
4' (coshk s+ cosh3k s)cos k x] (19a)

and

Y — {14 €C/ Jtanh kh

o

F 3
[TI (sinh k s—sinh3k s)sin k x] (19b)

Equations (19) indicate that mass transport velo-
city has a component of 0(¢*) which is dependent
on x, and that the vertical mass transport velocity
is nonzero at third or higher-orders. However, the
second term in Eq. (19a) as well as the vertical
mass transport velocity tends to average to zero as
a water particle travels over a distance equal to one
wavelength, so that the long-term mass transport
velocity reduces to

u s F?
TL =(1+¢C))tanh kh 2‘

0

cosh 2k s (20)

In deep water, Eq. (20) reduces to

LA 1 v 2,2y
C 1+ 2(ak) Tak)e 2N
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3.4 Fourth-Order Theory

For the Stokes fourth-order wave theory, the first-
order wave amplitude, a, the wave number, k, and
wave celerity, C, are identical as determined for the
Stokes third-order wave. By collecting terms up to
fourth-order in Eq. (6), the Lagrangian velocity is
given by

on I 3
YD 14, Tanh kb 1+ Fu= S 7)
R, o
cosh k §+—2" (F/*+ 10F )cosh3k s]cos 9
Fo,
+[2§(10F1 — SF\F>—48F,;— 24F))
1 )
- 2—4(41:‘14 + 37F|2F2 e 24F24 - 24F2)C05h2k S
Fo_ E
— Za QF~3F(F,— 80F oshdk s]cosz 6
F ] a1
+ [7 (F,2—5F;)cosh k s+ Fycosh3k s]cos39
1.
~| =(5F*— 61F ?F,+48F
[96( t 1 2 2 )
F _
+ 9_6(1:'3 - 34F|F1+ 160F3)C05h2k S

1 .
+ 55(F P2 32F jooshdk s]cos4 0

F? - _
- TI (cosh k s+cosh3k s) (wt) sin

F? 3 -
- 24+ 8F,))— —F %
[ 6 (F, 1) 2 Fi*cosh2k s

Fp2 :
L (F/*+ 8Fs)coshdk s](mt) §in20

+

1 ) 3
+§[F.~(3F.-—F2)—F,(5F,3+ 10F,F>

—32F,,— 16F,) cosh2ks
+(4F,*+ 31F 2F,+ 16F)coshdk s]} (22a)

and

Vi (X0, You 1)

CU = [l +83C.':|tanh kh{[(F] + F|3_ F|3)

e . F , ) .
sinh ks— El (F\"—6F>) sinh3k s]sm 0

] _

+ |:4_8(5F|4 - 16F|2F3 + 481:2 + 48F34) smh2k S

F FE
— 3 (Fi+3F(F:— 16F,) sinhdk s] sin20

3 U

+|Fisinh3ks— FiFasinh ks sin3@
| PP . _
+[§,)(3F1 +16F,F,— 128F;) sinh2k s

+F, sinh4k §] sin4 0

3
+ (mt)FTIsinh k s-cosh2k s*cos @

| . _ =
+ (wt)? (Fi*+8F),) sinh4k s+ cos2 9} (22b)

The horizontal and vertical displacement of parti-
cles are now given by

1 ( Fﬁ) _
=——|(F/+F——
¢ k[ F; T g coshks

F - _
= GF+10F) cosh3ks] sin B

1

F
I 9—6' (23F*+ 14F,F,— 96F ;;— 48F))

- 4’1§(17F|4+ 74F12F1_ 48F24_ 48F2X‘08h2k g
F . 1
- -9-6(F|’ —30F,F,— 160F;)coshd4k s]st 0

- ;k %'(Flz— SF,)cosh k s+ F; cosh3k §]sin3(§

11l
+ I[g—é(SF,“- 61F F,+ 48F)
+ 956‘ (F/— 34F >+ 160F ;)cosh2k §
] U
~ 5 (Fi'Fa32F Jcoshak s]sin4 9

- % {SF r"cosh k s+ cosh3k s)cos 6
+[F/((F*+8F,)—6F *cos2k s
+ F(F 4+ 8F,)cosh4k s]cos2 é}
Ct 7
+ ) [F*3F ~Fy)

- F|(5F13+ 10F|F2_32F13_ 16F1)COSh2k g
+(4F*+31F*F,+ 16F)coshdk s]  (23a)

and

{= %[(F[ +F;— %FH)Sinh ks

+ £8l (F.*+6F>)sinh3k E]cos 0
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171 ) _
o 4—8(5Fr‘— 16F °F,+ 48F,+48F,,)sinh2k s

F R
— L (5F*— 128F;)sinhdk s]cosz 8
%
+L{—3F Fisinhk s+ F; sinh3k 5] 0530
3k 2 1£281n S 3 SL Ci

I1TF o
i ;6'—(3F.3+ 16F F,— 128F;)sinh2k 5
+Fysinhdk s|cosd 8
Ct _ s
+ ED) [8F *(sinhk s—sinh3k s)sin 6
—FAF 2+ 8F,)sinh4k 5+sin2 8] (23b)

Accordinng to Egs. (7), the components of the
.nass transport velocity for the fourth-order Stokes
wave are determined as follows:

u

G,

1
=1+ z;ZCl’)tanh kh{ﬁ[FIZGFIZ_ F>)
—F(5F*+ 10F,F,— 32F;; — 16F)cosh2k 5
+(4F,*+31F ’F,+ 16F,%)coshdk s]

3
- ~IZL(cosh k s+cosh3k s)cos k x

- 31_2[1:12(1:.2+ 8F,)—6F *cosh2k s

+FXF >+ 8F,)coshdk s]cos2k i}
(24a)

and
\/3

C =(1+¢&’C)tanh kh

(]

3
[FTl(sinh k s—sinh3k s)-sink X
Fo o, o
- —37(F1 + 8F,)sinh4k s-sin2k x] (24b)

The terms dependent on X in Egs. (24) tend to
average to zero as a water particle travels over a
distance equal to one wavelength, so that the long-
term mass transport velocity may be given by

q - 1
C'; :(1 +82C| )tanh kh{§EF|2(3F|2_F2)

- Fx(5F13+ 10F1F2 - 32F13_ 16F1)C0§h2k g
+(4F*+ 31F°F,+ 16F%)coshdk s (25)

In deep water, Eq. (25) reduces to

ug

Co

:[1 +%(ak)2}

[ ke — ey + akes] )

3.5 Fifth-Order Theory

In the Stokes fifth-order wave theory, the first-or-
der wave amplitude, a, and the wave number, k,
must be determined from two equations given by

w’=gk tanhkh (1+&C,' +€°C,) (27a)
and
— 2 3 5
H= ?(8'*’8 B33+8 B55) (27b)

From Eq. (27a), the wave celerity, C, for the fifth-
order wave is given as C=C, tanh kh(1 +¢’C," +¢£'Cy).
The coeflicients Bss and Bss given by Skjelbreia and
Hendrickson (1960) may be found in Appendix L

By collecting the terms up to fifth-order in Eq.
(6), the Lagrangian velocity is given by

Uz (Xor You 1)
Co

{(Uy; cosh k s+ Uj; cosh3k s+ U)s cosh5k s)cosd
+(Uxp+ Uy, cosh2k s+ U, coshdk )+ cos20
+ (Us; coshk s+ Us; cosh3k s+ Uss cosh5k s)- cos38 -
+ (U + Uy, cosh2k s+ Uy, coshdk s)cosdd
+(Us; coshk s+ Us; cosh3k s+ Uss cosh Sk s)cosh 50
+ (S coshk s+S,; cosh3k s+ S5 cosh5k s) (wt)sin®
+ (St Sy cosh2k s+ Sy coshdk s) (wt)sin20
=+ (S;; coshk s+ S3; cosh3k s+ S;s coshSk s)(wt)sin30

=(1+&C,' +£&'C;')tanh kh

F,’ ! _ ]
- T;f (2cosh ks+ 5cosh3k s+ cosh5k s)(wt)’cosd

1 ) bl
+ 3—2[F1“(3F1‘ —F)

“F|(5F13+ 10F|F2—32F|3_ IGFI)COSZI( S
+(4F *+ 31F%F,+ 16F,%)- cosh4k s]} (28a)

in which

Uy =[1536(F, + Fi3+F5)— 576F,— 1872F °F 3
+264F°F;+ 1696F *F,+ 160F F2* + 65F,*1/1536.

U3 =(384F* + 3840F | F>+ 1440F °F 3 -+ 3840F \F»,
+ 3840F,F ;— 1552F°F; — 5276F "F> — 2608F | F»*
—383F%)/3072,

U\5=(3328F,F; +4864F /°F; + 1 756F "F>+4656F | F»*
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+83F,%)/3072,

Us=Fi(10F ? — 5F,F>—48F;— 24F)/48.

U= —@F*+ 37F°F>— 24F>— 24F»,)/24,

Usi= —F,(2F*— 3F ,F>— 80F;)/48,

U =(768F * — 3840F  F+ 2304F °F 3 — 3840F | F »4
—3840FF ;— 192F,°F;+ 3012F °F. — 4896 F | F»*
—131F,%)/3072,

Us; =[6144(F; + F35)— 15040F °F;+ 2124F °F»
+96F F-+ 531F,°1/6144,

Uss=F,(13056F,— 512F F,—476F °*F,— 1632F &
+179F /6144,

U= —(5F*— 61F°F,+48F,%/96.

Us= —F(F*—34F F>+ 160F;)/96,

U= —(F*F>—32F,)/32,

Us; = (4064F | °F;— 3328F.F; — 2156F °F, + 2656F | F+°
+175F /3072,

Usy = F{(2624F | F;— 13056F,+ 340F 2F,+ 512F
+ 117F/6144,

Uss=(6144F 5 +256F F;+612F °F3+ 21F *)/6144,

S; =~ FA(64F, + 80F ,F>+ 192F 5+ 21F *)/256,

S;; = —F\(128F 2+ 136F *F, + 128F-*+ 384F F
—47F%/512,

S5 = —F\(200F °F>+ 128F,2+ 53F,4)/512,

Sy = —FXF2+8F.)/16,

=3F%8, Su=—FXF2+8F)/16,

Sy = — F,(48F;— 56F ,F>+ 13F*)/64,

—FPQ1F 2~ 124F,)/128,

S = — F96F;—4F \F,+ F /128,

w
b
]

and

_‘/L(Lc’y"ﬁ =(1 +82C|’ +84C2')tanh kh{(V” sinhks

+ V3 sinh3k s+ Vs sinh5k s )sin

+ (V1 sinh2k s+ V5, sinh4k §)Sin2(3

+ (V3 sinh k s+ Vy; sinh3k $+ V35 sinh5k 8)sin30

+ (V4 sinh2k s+ Vy, sinh4k s)sindd

+(Vs; sinh k s+ Vs; sinh3k s+ Vss sinh5k 5)sin50
+(Ty; sinh k s+ T3 sinh3k s+ T}5 sinh5k s)(wt)cosd
+ Tay(wt)sinhdk s+ cos26

+ (T3 sinh k s+ T;; sinh3k s+ Sx; sinh5k s)

FS i _
(wt)cos30+ —3'7(3sinh k s—sinh3k s)ot)’sinB} (28b}

in which

V|| :[1536(1:1 +F13+ F15)_ 192F|3_64F12F3+ 64F}3F2
—352F,F*+257F °— 288F,°F 511536,

Vs =(— 384F *+ 2304F F» + 1536F°F: — 1736F /'F»
— 312F,F2’+ 165F "+ 2304F,F 3+ 2304F | F o
—576F *F13)/3072,

Vis=(1280F-F;+ 2432F °F; — 1096F 'F,+ 1536F F-*
—331F%)/3072.

Vo =(5F*— 16F"F>+ 48F,+ 48F~,)/48.

Vsy= —F(F/ +3F,F.— 16F3)/12.

Vi =(3072F s — 2304F | F-+ 816F ’F1+ 884F 'F
+ 1728F F+* — 2304F |F,— 2304F-F ; — 147F /3072,

Vi =(6144F;+ 6144F s— 12192F °F; — 260F 'F»
+96F F,*+63F,%)/6144,

Vs =F,(11520F,; — 256F \F1— 1900F °F»~ 1632F 2
+85F %/6144,

Vo =F,(3F+ 16F F.— 128F;)/96, Vy,=F,,

Vs =(2816F *F;— 1280F-F; — 366F 'F>— 320F ,F»*
—17F%)/3072,

Vo =F(1568F 2F:— 11520F,+ 292F °F,+ 416F,’
+F%/6144,

Vi =(6144F <+ 288F . 2F1+ 320F *F.+ 96F  F+*
+35F /6144,

Ty, =FX36F F.+ 3F,*—96F . — 32F,)/128,

Ti=F(192F,F;—224F *F,— 64F ' —21F*

+ 64F 2)/256,

Tis = F (184F*F> + 64F=" + 5F *)/256.

Ty =F(F/+8F.)/16.

Ty = F (48F;+ 34F \F,+ 5F*)/64,

Ty = —F(39F,+ 2F 2)/64,

Tss=F(48F;— F\F,+ F')/64.

The horizontal and vertical displacement of water
particles from their mean positions, £ and { deter-
mined by Egs. (4) are given by

E=— %(Un'cosh k s+ U/’cosh3k s+ Us'cosh5k s)sind
- 2—1]((U3(,' + Ux'cosh2k §+ Usy/'coshdk s)sin20
- %{(U;,'cosh k s+ Usi'cosh3k s+ Uss'coshSk s)sin3@
- 4—11((U40' + Us'cosh2k s+ Usy'cosh4k s)sin40

1 . . N _
- ﬁ((Usl'cosh k s+ Uss'cosh3k s+ Uss'cosh5k s)sin50

—(CtXS:,"cosh k s+ S;5'cosh3k s+ Sys'cosh 5k s)cosd
L«
2
(Cy
3

(S’ + Sz2'cosh2k s+ S.4'cosh4k 5)cos20

——=—>(Sy'cosh k s+ S3;'cosh3k s+ Sis'cosh5k s)cos36
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5
+ k(Ct)z%"1 (2coshk s+ Scosh3k s+ cos5k $)sinB

+ % [F|2(3F|2_ Fz) - F|(5F|3 + IOFle’_ 32F13
—16F;)cosh2k s+ (4F*+ 31F*F>+ 16F?)coshdk s (29a)
in which

Uy =[1536(F, + F i3+ Fi5)— 192F*— 720F,°F 3
+264F °F3+ 2176F °F,+ 160F,F2+ 287F,*1/1536,

Uy =(1152F,*+ 3840F \F, + 3744F °F 3+ 3840F , F 4
+ 3840F,F 3, — 1552F °F, — 4460F °F, — 1840F | F?
— 185F°)/3072,

U5’ =(3328F,F;+ 4864F F;+ 2956F °F, + 5424F | F2
+331F /3072,

Uy =F(23F 3+ 14F \F,—96F; — 48F)/96,

Uy’ = —(17F*+ 74F *F,— 48F; — 48F,)/48,

Uy’ = — Fy(F >~ 30F F>— 160F3)/96,

Uy, = (768F > — 3840F, F> + 2304F *F 3 — 3840F  F 4
— 3840F,F 3+ 576F *F;+2116F °F,— 4896 F | FF;?
+77F%)/3072,

Ui’ =(6144F; + 6144F 3s— 15040F °F;+ 140F °F,
+96F F,*+ 867F °)/6144,

Us;s' =F,(13056F,; + 1024F | F; — 540F *F, — 1632F,2
+ 195F,%)/6144,

Us' =Us, Un'=Usp, Us'=Us, Us'=Us,

Usy’=Uss, Uss'=Uss,

Si' =FA(64F,+ 80F F>+ 192F 3+ 37F °)/256,

Si;' =Fi(128F 4+ 136F*F,+ 128F>+ 384F |F;
+33F%/512,

Sis" =F)(200F *F,+ 128F 2+ 69F /512, Sx'= —Sux,

S»' =—S» Su'=—Su Si'=—S;. Su'=-—Su.

Sis’'=~Sss.

and

= %(Vn'sinh k $+V,y'sinh3k s+ V5'sinh5k s)cos
+ 2_1k (Vx'sinh2k 5+ Va4'sinh4k s)cos2 8
+ %(Vg,’sinh k s+ V33'sinh3k s+ Vi5'sinhSk s)cos3 0
+ le(w4g'sinh2k s+ Vu'sinh4k s)cos4 0

1 . - ~
+ §((V si'sinh k s+ Vsy'sinh3k s+ Vss'sinh5k s)cos5 8

- (Ct)(T[ |'Sinh k g + T]}ISiI‘l3k § + T;s'sin5k E)Slﬂé

_©
2
Y

t _ _ _
- (—3 (T5/'sinh k s+ Ts;'sinh3k s+ Tss'sinh5k s)sin30

Ta4'sinh4k s-sin2 6

5
+ k(Ct)ZI;—'z(.’Jsinh k 5—sinh3k s)cosd (29b)

in which

V' =[1536(F, + F 3+ Fi5)— 576F > — 64F°F;
+496F °F,— 352F,F,* 4+ 5F*— 1440F /°F ;3)1/1536,
Viy' =(384F* + 2304F,F,+ 1536F *F; — 4424F °F,
—1280FF;*+ 105F °+ 2304F,F ; + 2304F , F,
+ 1728F7F,)/3072,
Vis' = (1280F,F;+2432F *F; + 1112F,°F,+ 2304F 2
—271F%)/3072,
Vi ' =Vy, Va'=—F\|(5F—128F;)/96,
Vi’ =(3072F s— 2304F,F,+ 1584F °F; + 1428F °F,
+ 1728F F>* — 2304F | Fy,— 2304F:F 3 — 67F /3072,
Vi3 =(6144F;+ 6144F;5— 12192F*F; — 1508F /°F;
+96F Fy’—F\%)/6144,
Vis' =F1(11520F,+ 1280F F;— 1932F °F, — 1632F,?
+ 117F,%)/6144,
Vo' =V, Vu'=Vy, V5'=V5, Vi'=Vs, Vi'= Vss,
Ty’ =F36F,F,—21F*—96F;; — 32F,)/128,
Tis' =F(192F F 3 — 224F °F,— 64F > — 5F*
+64F%)/256,
T’ =Tis, Tod =Tas T/ =T, Ty'=Ts, Tas'=Tis.

According to Eqgs. (7), the mass transport velocity
for the fifth-order Stokes wave is given by
ﬁ[‘ :(1 +82C|’+84C2’)tanh kh{l[F12(3F12—Fz)
C 32

]

—F(5F+ 10F,F,— 32F;— 16F)cosh2k s
+(4F*+31F,’F, + 16F ?)coshdk 5]
—(Sy/'cosh k s+5,5'cosh3k s+ S,5'cosh5k s)cos k x

- %(Szo’ + SzzICOSth s+ Sz4’COSh4k §)C052k 5(

- %(Su’cosh ks+ S33'cosh3ks + Sis'cosh5ks)cos3k x
| _ . .

+ ng(?,coshks + 5cosh3ks + coshSks)sin k x)} (30a)

and

\3

C =(1+&C/+&*Cy Y tanh kh{—(T,/'sinh k s



196 Tae in Kim and Im Koo Hwang
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(b) Stokes Third-Order Theory

&/h= 1.0

T . 29
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- V
a
£
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a

(c) Stokes Fifth-Order Theory

Fig. 2. Comparison between the predicted and the com-
puted orbital motions of a water particle about
its mean position at k x=0; H/L,=0.0625, h/L,=0.
20 [case7-B in Dean (1974)]

+T13'sinh3k §+T15'sinh5k g)SiI'l kx

- %T24'sinh4k s-sin2k x

- %(T;l'sinhk s+Ty'sinh3k s+ T;s'sinh 5k s)sin3k x
F? .. . . .

+ n1—6(331nh k s—sinh3k s)cos k x)} (30b)

The terms dependent on x in Egs. (30a) tend to
average to zero as a water particle travels over a
distance equal to one wave-length, so that the
long-term mass transport velocity reduces to
u
Co

—F\(5F*+ 10F,F,—32F,;— 16F)cosh2k s

1
= (1 + 82C1’ + s“Cz')tanh kh{éi[FIZ(:;Flz - Fz)

+(4F*+ 31F°F.+ 16F,))cosh4k s]} 3N
In deep water, Eq. (31) reduces to

ﬁL — [1 +(ak)2+ i(ak)4]]/2,
C 4

u

[(ak)zeu?—%(ak)f‘eﬂﬂak)"e“ 9 32)

PRI g/h=1.0 - tH

¥/h =05

(a) Stokes Second-Order Theory

§/h=1.0 -i"“ E/he0.5

Egs. 29

(c) Stokes Fifth-Order Theory

Fig. 3. Comparison between the predicted and the com-
puted orbital motions of a water particle about
its mean position at k x=n/4; H/L,=0.0625, h/L,=
020 {case7-B in Dean (1974)]

4. ANALYTICAL RESULTS

The orbital motion of the fluid particles whose
mean position is located under the wave crest (kx=
0) at time t=0 is shown in Fig. 2 at the mean
depths s/h=10 (near the free surface) and s/h=.50
(mid-depth) for waves with h/L,=.025 and h/L,= 20
[Case 7-B in Dean (1974)]. The solid lines represent
the orbital motion computed by a numerical interg-
ration of the water particle velocities given by the
Stokes wave theory utilizing the fourth-order Runge-
Kutta method of step-wise integration. The compu-
ter was fed the initial position of the water particle
from which the computer calculated the local velo-
cities and instantaneous direction of motion. After
an increment of time (t=.0125T), the computer used
the new particle position and repeated the necessary
calculations. Reducing the time increment smaller
than 0125T did not change the computed orbital
motion. The dotted lines represent the orbital mo-
tions predicted by the expressions for water particle
displacements & and { obtained in this study.™

In Fig. 2, Stokes second-order theory is shown
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& 0] T 3 B2 A T
R TN

8 3 = Third-Crder Theory 1.0
5 = Fifth-Order Theory - * 0.5

(b) H/L,=.0938. h/L,=.20 [Case 7-C]

Fig. 4. Variation of mass transport velocity about its mean
value over one wave length.

to predict a larger horizontal mass transport velocity
than higher-order theories especially near the free
surface. The orbital motion predicted by Egs. (13)
has the horizontal mass transport velocity much
greater than the computed values for second-order
theory. For third- and fifth-order theory, the predic-
ted orbital motion are close to the computed mo-
tions. The agreement between the predicted and co-
mputed motions according to the fifth-order Stokes
wave theory at mid-depth is remarkable. The disag-
reement near the free-surface is due to the large
displacement of the water particles from their mean
positions which yields a poor approximation by Ta-
ylor’s theorem. In Fig. 2, no vertical mass transport
is found at k x=0 as was predicted in the théories.

Fig. 3 shows the same comparisons for water par-
ticles whose mean position is located at a quarter
wavelength from the crest (kx=n/4) for the waves
considered in Fig. 2. A large vertical mass transport
in computed motions is noticeable as is in good
agreement with the predicted values by the third-

) oy £ £ . £ o £

Gu/Ca Uu/Ce

Fig. 5. Lagrangian mass transport velocity profiles over
depth for Stokes waves.

and the fifth-order theory. The third-and fifth-order
expressions for the orbital motions given by Egs.
(18) and (29) slightly underpredict the horizontal
mass transport in Fig. 2 and 3.

Computed motions at two different horizontal lo-
cations for the same wave condition show that the
mass transport velocity varies according to the ini-
tial horizontal position of the water particles at time
t=0 relative to the wave crest. This dependency of
mass transport on the horizontal distance is not
accounted for by the second-order theory, but is
accounted for in Egs. (19) and (30) for the third-
and the fifth-order theories by the terms dependent
on Xx.

Fig. 4 shows the variation of mass transport over
one wave length according to the predictions by
Egs. (19) and (30) for the wave of (a) H/L,=0.031,
h/L,=020 [Case 7-A in Dean (1974)], and (b) H
/L,=0094, h/L,=020 [Case 7-C in Dean (1974)].
The vertical axes represent the horizontal and verti-
cal mass transport velocity, u, and v, to the mean
horizontal mass transport velocity, U, given by the
first term in Egs. (19) and (30), respectively. The
solid lines represent the values at the free surface
(sh=10) and the dotted lines at the mid-depth
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(s/h=0.5). The maximum horizontal mass transport
occurs with the particles whose mean positions are
located under the wave trough at time t=0, while
the minimum horizontal mass transport occurs with
the particles whose mean positions are located un-
der the wave crest at t=0. However, the opposite
occurs in the case of the vertical mass transport.
Variations of mass transport velocity about its mean
values are most pronounced at the free surface and
decreases with increasing vertical distance from the
free surface. The ratio of u/u,,, varies between —0.6
<u/u.,<13 and —03<v/u.,<03 at the free-sur-
face over the range of 0.08<h/L,<2.0 and 0.02<H
/L,<0.12.

As water particles travel over a large distance lo-
nger than one wave length, the mass transport due
to the mass transport components which are depen-
dent on x in Egs. (19) and (30) tend to average
to zero, and the average horizontal mass transport
velocity may be given by the first terms in Egs.
(19a) and (30a). The average (or long-term) horizon-
tal mass transport velocity profiles over depth are
plotted in Fig. 5 for the four wave conditions.

In Fig. 5. Case 7 and Case 8 by Dean’s (1974)
category represent the intermediate water depth and
deep water, respectively, while condition B and D
represent wave height of 50% and 100% of the brea-
king limit, respectively. In general. the higher-order
Stokes theories predict smaller values of mass trans-
port velocity than the existing second-order Stokes
theory over the whole water depth, and the differe-
nce is increasing as the wave height approaches
to the breaking condition. At the free-surface, the
mass transport (surface drift) velocities in the 3rd-
order and Sth-order theory show 88-93% of those
in the second-order theory for the cases of 7-B and
8-B. For the cases of 7-D and 8-D, however, the
surface drift velocities in the 3rd- and 5th-order
theory predict 57-79% of those in the second-order
theory. This results show that the existing se-
cond-order Stokes mass transport velocity should
be modified significantly, especially near the free-
surface for waves of large amplitude.

At present, experimental data which provide defi-
nite comparison between theories for the mass tran-
sport velocity of water particles under progressive

waves are not available. Therefore, judgment conce-
rning the excellency of each mass transport theory
presented in this study may be made when experi-
mental data which are acquired through more hi-
ghly controlled laboratory measurement than the
previous experimental studies are reported.

5. CONCLUSIONS

The existing theories for orbital motion and mass
transport velocity under progressive finite-amplitude
waves are extended to include higher-hamonic wave
components by utilizing Taylor’s theorem. The 5th-
order approximation of orbital motion for the Sto-
kes waves gives very good predictions of actual wa-
ter particle motion given by the Stokes Sth-order
theory except near the free surface. Near the free
surface, the Sth-order approximation for the Lagra-
ngian motion of water particles predicts slightly lo-
wer values of mass transport velocity than the actual
values computed by the Stokes 5Sth-order wave
theory.

In the 3rd- or higher-order approximation for the
Lagrangian motion of water particles, the mass tra-
nsport velocity over one wave cycle is dependent
on the initial position of water particles. The varia-
tion of the horizontal mass transport velocity about
its mean value over one wave cycle at the free sur-
face is 40% at most for the wave steepness parame-
ter 0.02<H/L,<0.12. Stokes 3rd- and Sth-order theo-
ries predict the mass transport velocity less than
that given by the existing second-order theory over
the whole water depth, and the difference increases
as the wave amplitude increases. At the breaking
limit, the surface drift velocities in the 3rd-and 5th-
order theory show approximately 70-80% of the va-
lues in the second-order theory in intermediate and
deep water conditions.
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APPENDIX I
COEFFICIENTS USED IN STOKES FIFTH-ORDER WAVE THEORY

The coefficients used in the Stokes fifth-order wave theory were obtained by Skjelreia and Hendrickson

(1960) as follows:

PR R € o)
g g &8s
A —(1184c'— 1440c* — 1992¢+ 264 1c* — 249¢" + 18)
" 1536s'!
Al 3L (1926 —424c" 3106 - 480¢ ~ 17)
T8t . 768s™
_(13-4¢)
A=

_ (512¢"7+4224¢"" - 6800c" — 12808c” + 16704¢* — 3154¢7 + 107)

35—

4096s'*(6¢* — 1)
(80c®—816¢* 4+ 1338c*— 197)
1536s"(6c* — 1)
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_ —(2800c"" —72480c* + 324000c" — 432000c’ + 163470c* — 16245)

Ass 614405 (6c>—2) (8c*—11c2+3)

38+ 1)

T st
Boe (88128¢"— 208224c "2+ 70848¢'0+ 540008 — 21816¢°+ 6264c* — 54c2—81)

. 12288s'%6c2— 1)
B (192000c"°— 262720c'* + 83680c*+20160¢ '~ 7280c") (7160c— 1800c* — 10502 +225)
: 12228562 — 1) (8c*—11c>+3) 122885'%(6c2— 1) (8c*—11c2+3)
cr= (8c*—8c+9)

8s*

/= (3840c'2— 4096¢"— 25928 — 1008c° + 5944c* — 1830c2 + 147)

5128"%(6c*— 1)

in which c¢=cosh kh. and s=sinh kh.



