• 제목/요약/키워드: higher order frequencies

검색결과 353건 처리시간 0.021초

차륜과 철로의 연성진동에 관한 연구 (A study on the coupled vibration of train wheel and rail)

  • 김광식;김찬묵;윤희욱
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.385-396
    • /
    • 1989
  • 본 논문에서는 차륜과 레일의 접촉부에서 발생하는 크리프힘과 크리프모멘트 를 결합시키고 이들이 병진스프링과 비틀림스프핑에 의해서 연성되었을때 생기는 고유진동수의 특성을 차륜과 레일의 직교성을 이용하여 수치해석하고 모델실험을 통하여 연구하였다.

An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam with steel skins for two types of soft and stiff cores

  • Marandi, S. Masoud;Dehkordi, Mohsen Botshekanan;Nourbakhsh, S. Hassan
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.261-276
    • /
    • 2019
  • The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated for the stiff one.

Influence of higher order modes and mass configuration on the quality of damage detection via DWT

  • Vafaei, Mohammadreza;Alih, Sophia C
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1221-1232
    • /
    • 2015
  • In recent decades, wavelet transforms as a strong signal processing tool have attracted attention of researchers for damage identification. Apart from the wide application of wavelet transforms for damage identification, influence of higher order modes on the quality of damage detection has been a challenging matter for researchers. In this study, influence of higher order modes and different mass configurations on the quality of damage detection through Discrete Wavelet Transform (DWT) was studied. Nine different damage scenarios were imposed to four cantilever structures having different mass configurations. The first four mode shapes of the cantilever structures were measured experimentally and analyzed by DWT. A damage index was defined in order to study the influence of higher order modes. Results of this study showed that change in the mass configuration had a great impact on the quality of damage detection even when the changes altered natural frequencies slightly. It was observed that for successful damage detection all available mode shapes should be taken into account and measured mode shapes had no significant priority for damage detection over each other.

Irregular frequency effects in the calculations of the drift forces

  • Liu, Yujie;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.97-109
    • /
    • 2019
  • Accurate calculation of the mean drift forces and moments is necessary when studying the higher order excitations on the floater in waves. When taking the time average of the second order forces and moments, the second order potential and motion diminish with only the first order terms remained. However, in the results of the first order forces or motions, the irregular frequency effects are often observed in higher frequencies, which will affect the accuracy of the calculation of the second order forces and moments. Therefore, we need to pay close attention to the irregular frequency effects in the mean drift forces. This paper will discuss about the irregular frequency effects in the calculations of the mean drift forces and validate our in-house program MDL Multi DYN using some examples which are known to have irregular frequency effects. Finally, we prove that it is necessary to remove the effects and demonstrate that the effectiveness of the formula and methods adopted in the development of our program.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Finite element analysis for longitudinal vibration of nanorods based on doublet mechanics

  • Ufuk Gul;Metin Aydogdu
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.411-422
    • /
    • 2023
  • In the present study, the axial vibration of the nanorods is investigated in the framework of the doublet mechanics theory. The equations of motion and boundary conditions of nanorods are derived by applying the Hamilton principle. A finite element method is developed to obtain the vibration frequencies of nanorods for different boundary conditions. A two-noded higher order rod finite element is used to solve the vibration problem. The natural frequencies of nanorods obtained with the present finite element analysis are validated by comparing the results of classical doublet mechanics and nonlocal strain gradient theories. The effects of rod length, mode number and boundary conditions on the axial vibration frequencies of nanorods are examined in detail. Mode shapes of the nanorods are presented for the different boundary conditions. It is shown that the doublet mechanics model can be used for the dynamic analysis of nanotubes, and the presented finite element formulation can be used for mechanical problems of rods with unavailable analytical solutions. These new results can also be used as references for the future studies.

강한 압력 교란에 구속된 고압 액적의 연소 응답 (Responses of Droplet Evaporation to High-Pressure Oscillations)

  • 김성엽;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1286-1291
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

Open-Loop Responses of Droplet Vaporization to Linear Normal Acoustic Modes

  • Kim, S.Y.;W.S. Yoon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.155-164
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted, Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구 (An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor)

  • 이장수;김민기;박성순;이종근;윤영빈
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.