• Title/Summary/Keyword: higher order elements

Search Result 498, Processing Time 0.022 seconds

Completeness requirements of shape functions for higher order finite elements

  • Rajendran, S.;Liew, K.M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.93-110
    • /
    • 2000
  • An alternative interpretation of the completeness requirements for the higher order elements is presented. Apart from the familiar condition, $\sum_iN_i=1$, some additional conditions to be satisfied by the shape functions of higher order elements are identified. Elements with their geometry in the natural form, i.e., without any geometrical distortion, satisfy most of these additional conditions inherently. However, the geometrically distorted elements satisfy only fewer conditions. The practical implications of the satisfaction or non-satisfaction of these additional conditions are investigated with respect to a 3-node bar element, and 8- and 9-node quadrilateral elements. The results suggest that non-satisfaction of these additional conditions results in poorer performance of the element when the element is geometrically distorted. Based on the new interpretation of completeness requirements, a 3-node element and an 8-node rectangular element that are insensitive to mid-node distortion under a quadratic displacement field have been developed.

Improving the eigenvalue using higher order elements without re-solving

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-398
    • /
    • 1997
  • High order finite element have a greater convergence rate than low order finite elements, and in general produce more accurate results. These elements have the disadvantage of being more computationally expensive and often require a longer time to solve the finite element analysis. High order elements have been used in this paper to obtain a new eigenvalue solution with out re-solving the new model. The optimisation of the eigenvalue via the differentiation of the Rayleigh quotient has shown that the additional nodes associated with the higher order elements can be condensed out and solved using the original finite element solution. The higher order elements can then be used to calculate an improved eigenvalue for the finite element analysis.

Non-conforming modes for improvement of finite element performance

  • Choi, Chang-Koon;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.595-610
    • /
    • 2002
  • This paper presents an efficiency of various non-conforming (NC) modes in development of a series of new finite elements with the special emphasis on 4-node quadrilateral elements. The NC modes have been used as a key scheme to improve the behaviors of various types of new finite elements, i.e., Mindlin plate bending elements, membrane elements with drilling degrees of freedom, flat shell elements. The NC modes are classified into three groups according to the 'correction constants' of 'Direct Modification Method'. The first group is 'basic NC modes', which have been widely used by a number of researchers in the finite element communities. The basic NC modes are effective to improve the behaviors of regular shaped elements. The second group is 'hierarchical NC modes' which improve the behaviors of distorted elements effectively. The last group is 'higher order NC modes' which improve the behaviors of plate-bending elements. When the basic NC modes are combined with hierarchical or higher order NC modes, the elements become insensitive to mesh distortions. When the membrane component of a flat shell has 'hierarchical NC modes', the membrane locking can be suppressed. A number of numerical tests are carried out to show the positive effect of aforementioned various NC modes incorporated into various types of finite elements.

A Performance Evaluation of Beam Finite Elements with Higher-order Derivatives' Continuity (고차미분 연속성을 가지는 유한요소 보 모델들에 대한 성능평가)

  • Lee, Gijun;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.335-341
    • /
    • 2017
  • In this paper, beam finite elements with higher-order derivatives' continuity are formulated and evaluated for various boundary conditions. All the beam elements are based on Euler-Bernoulli beam theory. These higher-order beam elements are often required to analyze structures by using newly developed higher-order beam theories and/or non-classical beam theories based on nonlocal elasticity. It is however rare to assess the performance of such elements in terms of boundary and loading conditions. To this end, two higher-order beam elements are formulated, in which $C^2$ and $C^3$ continuities of the deflection are enforced, respectively. Three different boundary conditions are then applied to solve beam structures, such as cantilever, simply-support and clamped-hinge conditions. In addition to conventional Euler-Bernoulli beam boundary conditions, the effect of higher-order boundary conditions is investigated. Depending on the boundary conditions, the oscillatory behavior of deflections is observed. Especially the geometric boundary conditions are problematic, which trigger unstable solutions when higher-order deflections are prescribed. It is expected that the results obtained herein serve as a guideline for higher-order derivatives' continuous finite elements.

A Study on the Use of Hierarchical Elements for Incompressible Flow Computations (비압축성 유동계산을 위한 계층 요소 사용에 대한 연구)

  • Kim, Jin-Whan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.422-429
    • /
    • 2001
  • A two dimensional hierarchical elements are investigated for a use on the incompressible flow computation. The construction of hierarchical elements are explained through the tensor product of 1-D hierarchical functions, and a systematic treatment of essential boundary values has been developed for the degrees of freedom corresponding to higher order terms. The numerical study for the poisson problem showed that the present scheme can increase the convergence and accuracy of finite element solutions, and can be more efficient than the standard first order with many elements. Also, for Stokes and cavity flow cases, solutions from hierarchical elements showed better resolutions and future promises for higher order solutions.

  • PDF

An Investigation of the Use of Hierarchical Elements for Incompressible Flow Computations (비압축성 유동계산을 위한 계층 요소 사용의 검토)

  • Kim, Jin-Hwan;Jeong, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1209-1217
    • /
    • 2002
  • The use of a two dimensional hierarchical elements are investigated for the incompressible flow computation. The construction of hierarchical elements are explained by both a geometric configuration and a determination of degrees of freedom. Also a systematic treatment of essential boundary values has been developed for the degrees of freedom corresponding to higher order terms. The numerical study for the poisson problem shows that the computation with hierarchical higher order elements can increase the convergence rate and accuracy of finite element solutions in more efficient manner than the use of standard first order element. for Stokes and Cavity flow cases, a mixed version of penalty function approach has been introduced in connection with the hierarchical elements. Solutions from hierarchical elements showed better resolutions with consistent trends in both mesh shapes and the order of elements.

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

Implementation of Eigenvalue Analysis Program for Microwave Components Using High Order Vector Elements (고차벡터요소를 사용한 초고주파 소자의 고유치 해석 프로그램 구현)

  • 김형석;김영태
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.296-302
    • /
    • 2001
  • In this paper, the vector finite elements are adopted to calculate eigenvalues of RF and microwave components. Simulation results show that spurious are completely avoided because of the divergence free nature of the vector elements. This paper seeks to extend these low-order elements to higher orders to improve the accuracy of numerical solution. Investigation of numerical results for a rectangular waveguide was provided. A vector finite element program was implemented to allow propagation constants and electric field distributions to be directly computed in the rectangular and circular waveguides which are partially filled with the dielectric.

  • PDF

An Incompressible Flow Computation by a Hierarchical Iterative and a Modified Residual Method (계층적 반복과 수정 잔여치법에 의한 비압축성 유동 계산)

  • Kim J. W.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.57-65
    • /
    • 2004
  • The incompressible Navier-Stokes equations in two dimensions are stabilized by a modified residual method, and then discretized by hierarchical elements. The stabilization is necessary to escape from the Ladyzhenskaya-Babuska-Brezzi(LBB) constraint and hence to achieve an equal order formulation. To expedite a standard iterative method such as the conjugate gradient squared(CGS) method, a preconditioning technique called the Hierarchical Iterative Procedure(HIP) has been applied. In this paper, we increased the order of interpolation within an element up to cubic. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far The numerical results by the present HIP for the lid driven cavity flow and others showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

A field-consistency approach to plate elements

  • Prathap, Gangan
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.853-865
    • /
    • 1997
  • The design of robust plate and shell elements has been a very challenging area for several decades. The main difficulty has been the shear locking phenomenon in plate elements and the shear and membrane locking phenomena together in the shell elements. Among the various artifices or devices which are used to develop elements free of these problems is the field-consistency approach. In this paper this approach is reviewed, It turns out that not only Mindlin type elements but also elements based on higher-order theories could be developed using the technique.