• 제목/요약/키워드: higher order elements

검색결과 498건 처리시간 0.026초

Completeness requirements of shape functions for higher order finite elements

  • Rajendran, S.;Liew, K.M.
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.93-110
    • /
    • 2000
  • An alternative interpretation of the completeness requirements for the higher order elements is presented. Apart from the familiar condition, $\sum_iN_i=1$, some additional conditions to be satisfied by the shape functions of higher order elements are identified. Elements with their geometry in the natural form, i.e., without any geometrical distortion, satisfy most of these additional conditions inherently. However, the geometrically distorted elements satisfy only fewer conditions. The practical implications of the satisfaction or non-satisfaction of these additional conditions are investigated with respect to a 3-node bar element, and 8- and 9-node quadrilateral elements. The results suggest that non-satisfaction of these additional conditions results in poorer performance of the element when the element is geometrically distorted. Based on the new interpretation of completeness requirements, a 3-node element and an 8-node rectangular element that are insensitive to mid-node distortion under a quadratic displacement field have been developed.

Improving the eigenvalue using higher order elements without re-solving

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.385-398
    • /
    • 1997
  • High order finite element have a greater convergence rate than low order finite elements, and in general produce more accurate results. These elements have the disadvantage of being more computationally expensive and often require a longer time to solve the finite element analysis. High order elements have been used in this paper to obtain a new eigenvalue solution with out re-solving the new model. The optimisation of the eigenvalue via the differentiation of the Rayleigh quotient has shown that the additional nodes associated with the higher order elements can be condensed out and solved using the original finite element solution. The higher order elements can then be used to calculate an improved eigenvalue for the finite element analysis.

Non-conforming modes for improvement of finite element performance

  • Choi, Chang-Koon;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.595-610
    • /
    • 2002
  • This paper presents an efficiency of various non-conforming (NC) modes in development of a series of new finite elements with the special emphasis on 4-node quadrilateral elements. The NC modes have been used as a key scheme to improve the behaviors of various types of new finite elements, i.e., Mindlin plate bending elements, membrane elements with drilling degrees of freedom, flat shell elements. The NC modes are classified into three groups according to the 'correction constants' of 'Direct Modification Method'. The first group is 'basic NC modes', which have been widely used by a number of researchers in the finite element communities. The basic NC modes are effective to improve the behaviors of regular shaped elements. The second group is 'hierarchical NC modes' which improve the behaviors of distorted elements effectively. The last group is 'higher order NC modes' which improve the behaviors of plate-bending elements. When the basic NC modes are combined with hierarchical or higher order NC modes, the elements become insensitive to mesh distortions. When the membrane component of a flat shell has 'hierarchical NC modes', the membrane locking can be suppressed. A number of numerical tests are carried out to show the positive effect of aforementioned various NC modes incorporated into various types of finite elements.

고차미분 연속성을 가지는 유한요소 보 모델들에 대한 성능평가 (A Performance Evaluation of Beam Finite Elements with Higher-order Derivatives' Continuity)

  • 이기준;김준식
    • 한국전산구조공학회논문집
    • /
    • 제30권4호
    • /
    • pp.335-341
    • /
    • 2017
  • 본 논문에서는 고차미분 연속성을 가지는 형상함수에 기초하여 오일러-베르누이 보 유한요소모델을 정식화하였으며, 다양한 경계조건들에 대하여 그 성능을 평가하였다. 이러한 유한요소 모델들은 새로이 개발되는 고차 보 이론들과 논로컬 탄성이론에 기초한 보 이론들의 유한요소해석에 필요하다. 그러나 고차 연속성을 가지는 유한요소에 대한 성능평가는 문헌에서 찾아보기 어렵다. 따라서 본 연구에서는 $C^2$$C^3$ 두 종류의 고차 유한요소들을 정식화하여 외팔보, 단순지지, 고정-힌지 등의 경계조건들을 적용하고 정적해석을 수행하였다. 고전적인 경계조건들 이외에도 고차 경계조건들이 보의 거동에 미치는 영향을 비교분석하였다. 경계조건에 따라서는 처짐의 미분 값들이 경계주변에서 진동하는 현상이 관찰되었으며, 이는 기하학적 경계조건들에 대하여 뚜렷이 나타난다. 특히 고정단과 같은 경계에서의 변위의 고차미분 조건은 이러한 불안정한 현상을 유발한다. 본 연구에서 얻어진 결과들은 고차 미분 연속성을 가지는 유한요소 이용에 가이드라인으로서 역할을 할 수 있을 것으로 기대된다.

비압축성 유동계산을 위한 계층 요소 사용에 대한 연구 (A Study on the Use of Hierarchical Elements for Incompressible Flow Computations)

  • 김진환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.422-429
    • /
    • 2001
  • A two dimensional hierarchical elements are investigated for a use on the incompressible flow computation. The construction of hierarchical elements are explained through the tensor product of 1-D hierarchical functions, and a systematic treatment of essential boundary values has been developed for the degrees of freedom corresponding to higher order terms. The numerical study for the poisson problem showed that the present scheme can increase the convergence and accuracy of finite element solutions, and can be more efficient than the standard first order with many elements. Also, for Stokes and cavity flow cases, solutions from hierarchical elements showed better resolutions and future promises for higher order solutions.

  • PDF

비압축성 유동계산을 위한 계층 요소 사용의 검토 (An Investigation of the Use of Hierarchical Elements for Incompressible Flow Computations)

  • 김진환;정창률
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1209-1217
    • /
    • 2002
  • The use of a two dimensional hierarchical elements are investigated for the incompressible flow computation. The construction of hierarchical elements are explained by both a geometric configuration and a determination of degrees of freedom. Also a systematic treatment of essential boundary values has been developed for the degrees of freedom corresponding to higher order terms. The numerical study for the poisson problem shows that the computation with hierarchical higher order elements can increase the convergence rate and accuracy of finite element solutions in more efficient manner than the use of standard first order element. for Stokes and Cavity flow cases, a mixed version of penalty function approach has been introduced in connection with the hierarchical elements. Solutions from hierarchical elements showed better resolutions with consistent trends in both mesh shapes and the order of elements.

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

고차벡터요소를 사용한 초고주파 소자의 고유치 해석 프로그램 구현 (Implementation of Eigenvalue Analysis Program for Microwave Components Using High Order Vector Elements)

  • 김형석;김영태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권6호
    • /
    • pp.296-302
    • /
    • 2001
  • In this paper, the vector finite elements are adopted to calculate eigenvalues of RF and microwave components. Simulation results show that spurious are completely avoided because of the divergence free nature of the vector elements. This paper seeks to extend these low-order elements to higher orders to improve the accuracy of numerical solution. Investigation of numerical results for a rectangular waveguide was provided. A vector finite element program was implemented to allow propagation constants and electric field distributions to be directly computed in the rectangular and circular waveguides which are partially filled with the dielectric.

  • PDF

계층적 반복과 수정 잔여치법에 의한 비압축성 유동 계산 (An Incompressible Flow Computation by a Hierarchical Iterative and a Modified Residual Method)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.57-65
    • /
    • 2004
  • The incompressible Navier-Stokes equations in two dimensions are stabilized by a modified residual method, and then discretized by hierarchical elements. The stabilization is necessary to escape from the Ladyzhenskaya-Babuska-Brezzi(LBB) constraint and hence to achieve an equal order formulation. To expedite a standard iterative method such as the conjugate gradient squared(CGS) method, a preconditioning technique called the Hierarchical Iterative Procedure(HIP) has been applied. In this paper, we increased the order of interpolation within an element up to cubic. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far The numerical results by the present HIP for the lid driven cavity flow and others showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

A field-consistency approach to plate elements

  • Prathap, Gangan
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.853-865
    • /
    • 1997
  • The design of robust plate and shell elements has been a very challenging area for several decades. The main difficulty has been the shear locking phenomenon in plate elements and the shear and membrane locking phenomena together in the shell elements. Among the various artifices or devices which are used to develop elements free of these problems is the field-consistency approach. In this paper this approach is reviewed, It turns out that not only Mindlin type elements but also elements based on higher-order theories could be developed using the technique.