• Title/Summary/Keyword: higher order algorithms

Search Result 213, Processing Time 0.03 seconds

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

Development of Machine Learning Based Precipitation Imputation Method (머신러닝 기반의 강우추정 방법 개발)

  • Heechan Han;Changju Kim;Donghyun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Precipitation data is one of the essential input datasets used in various fields such as wetland management, hydrological simulation, and water resource management. In order to efficiently manage water resources using precipitation data, it is essential to secure as much data as possible by minimizing the missing rate of data. In addition, more efficient hydrological simulation is possible if precipitation data for ungauged areas are secured. However, missing precipitation data have been estimated mainly by statistical equations. The purpose of this study is to propose a new method to restore missing precipitation data using machine learning algorithms that can predict new data based on correlations between data. Moreover, compared to existing statistical methods, the applicability of machine learning techniques for restoring missing precipitation data is evaluated. Representative machine learning algorithms, Artificial Neural Network (ANN) and Random Forest (RF), were applied. For the performance of classifying the occurrence of precipitation, the RF algorithm has higher accuracy in classifying the occurrence of precipitation than the ANN algorithm. The F1-score and Accuracy values, which are evaluation indicators of the classification model, were calculated as 0.80 and 0.77, while the ANN was calculated as 0.76 and 0.71. In addition, the performance of estimating precipitation also showed higher accuracy in RF than in ANN algorithm. The RMSE of the RF and ANN algorithms was 2.8 mm/day and 2.9 mm/day, and the values were calculated as 0.68 and 0.73.

A Study on the Prediction of Mortality Rate after Lung Cancer Diagnosis for Men and Women in 80s, 90s, and 100s Based on Deep Learning (딥러닝 기반 80대·90대·100대 남녀 대상 폐암 진단 후 사망률 예측에 관한 연구)

  • Kyung-Keun Byun;Doeg-Gyu Lee;Se-Young Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.87-96
    • /
    • 2023
  • Recently, research on predicting the treatment results of diseases using deep learning technology is also active in the medical community. However, small patient data and specific deep learning algorithms were selected and utilized, and research was conducted to show meaningful results under specific conditions. In this study, in order to generalize the research results, patients were further expanded and subdivided to derive the results of a study predicting mortality after lung cancer diagnosis for men and women in their 80s, 90s, and 100s. Using AutoML, which provides large-scale medical information and various deep learning algorithms from the Health Insurance Review and Assessment Service, five algorithms such as Decision Tree, Random Forest, Gradient Boosting, XGBoost, and Logistic Registration were created to predict mortality rates for 84 months after lung cancer diagnosis. As a result of the study, men in their 80s and 90s had a higher mortality prediction rate than women, and women in their 100s had a higher mortality prediction rate than men. And the factor that has the greatest influence on the mortality rate was analyzed as the treatment period.

Analysis of Donation Intention of MZ Generation and Senior Generation Using Machine Learning's logistic Regression (머신러닝의 로지스틱 회귀를 활용한 MZ세대와 시니어 세대의 기부의도 분석)

  • Min Jung Oh;IkJin Jeon
    • Journal of Information Technology Services
    • /
    • v.23 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • This study aims to find ways to increase the declining donation intention by using machine learning techniques. To this end, in order to predict factors that affect donations between the MZ generation and the senior generation, various machine learning algorithms, including logistic regression analysis, are applied to build a model to determine variables that affect donation intention, and provide statistical verification and evaluation indicators. In this study, differences in donation intention by generation were expected as a variable affecting donation intention, and the senior generation was expected to show a higher donation intention tendency than the younger generation. However, although the research results were not statistically significant, the younger generation showed a higher intention to donate, and these results are interpreted to mean that value consumption and ethical consumption, which are important to today's MZ generation, also influenced donations. However, there were differences between generations in the amount of donations, and higher donation amounts were confirmed among the senior generation (those in their 50s or older) than the younger generation. In addition, the results of the logistic regression analysis showed that previous donation experience had a positive effect on future donation intention, and the more motivation and importance of donation and various social participation activities online and offline, the more active one became in donating.

Wind Vector Retrieval from SIR-C SAR Data off the East Coast of Korea

  • Kim, Tai-Sung;Park, Kyung-Ae;Moon, Woo-Il
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.475-487
    • /
    • 2010
  • Sea surface wind field was retrieved from high-resolution SIR-C SAR data by using CMOD algorithms off the east coast of Korea. In order to extract wind direction information from SAR data, a two-dimensional spectral analysis method was applied to the normalized radar cross section of the image. An $180^{\circ}$-ambiguity problem in the determination of wind direction was solved by selecting a direction nearest to the wind vector of the ECMWF reanalysis data. Comparison of the wind retrieval patterns with the ECMWF and NCEP/NCAR dataset showed RMS errors in the range of 1.30 to $1.72\;ms^{-1}$. In contrast, comparison of wind directions revealed large errors of greater than $60^{\circ}$, which is enormously higher than the permitted limit of about $20^{\circ}$ for satellite scatterometer winds. Compared with wind speed results from different algorithms, wind vectors based on commonly-used CMOD4 algorithm showed good agreement with those derived by other algorithms such as CMOD_IFR2 and CMOD5, particularly at medium winds from 4 to $8\;ms^{-1}$. However, apparent discrepancy appeared at low winds (< $4\;ms^{-1}$). This study also addressed an importance of accurate wind direction data to improve the accuracy of wind speed retrieval and discussed potential causes of wind retrieval errors from SAR data.

Performance Evaluation and Design of Upstream Scheduling Algorithms To Support Channel Bonding (채널 결합 기반 상향스트림 스케줄링 알고리즘 설계와 성능평가)

  • Roh, Sun-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.8-18
    • /
    • 2009
  • CableLAB published DOCSIS 3.0 Specifications to supply broadband access to homes and small businesses. The primary technique of DOCSIS 3.0 Specification is channel bonding which provides cable operators with a flexible way to significantly increase up/downstream speeds. In this paper, we propose the upstream scheduler that serves channel bonding. Proposed scheduler consists of two sub-scheduler: bonding group scheduler and channel scheduler. Also, we propose three scheduling algorithms to allocate request bandwidth of CM to each bonding channel: equivalent scheduling algorithm, current request-based scheduling algorithm, and last grant-based scheduling algorithm. In order to evaluate the performance of these algorithms and DOCSIS 3.0 MAC protocol, we develop the DOCSIS 3.0 simulator with the network simulator, OPNET, to model DOCSIS network, CMTS, and CM. Our results show that equivalent scheduling algorithm is superior to others in the view of transmission delay and throughput and DOCSIS 3.0 protocol provides higher throughput than pre-DOCSIS 3.0 protocol.

Object Tracking using Color Histogram and CNN Model (컬러 히스토그램과 CNN 모델을 이용한 객체 추적)

  • Park, Sung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • In this paper, we propose an object tracking algorithm based on color histogram and convolutional neural network model. In order to increase the tracking accuracy, we synthesize generic object tracking using regression network algorithm which is one of the convolutional neural network model-based tracking algorithms and a mean-shift tracking algorithm which is a color histogram-based algorithm. Both algorithms are classified through support vector machine and designed to select an algorithm with higher tracking accuracy. The mean-shift tracking algorithm tends to move the bounding box to a large range when the object tracking fails, thus we improve the accuracy by limiting the movement distance of the bounding box. Also, we improve the performance by initializing the tracking start positions of the two algorithms based on the average brightness and the histogram similarity. As a result, the overall accuracy of the proposed algorithm is 1.6% better than the existing generic object tracking using regression network algorithm.

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

Multi-classification Sensitive Image Detection Method Based on Lightweight Convolutional Neural Network

  • Yueheng Mao;Bin Song;Zhiyong Zhang;Wenhou Yang;Yu Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1433-1449
    • /
    • 2023
  • In recent years, the rapid development of social networks has led to a rapid increase in the amount of information available on the Internet, which contains a large amount of sensitive information related to pornography, politics, and terrorism. In the aspect of sensitive image detection, the existing machine learning algorithms are confronted with problems such as large model size, long training time, and slow detection speed when auditing and supervising. In order to detect sensitive images more accurately and quickly, this paper proposes a multiclassification sensitive image detection method based on lightweight Convolutional Neural Network. On the basis of the EfficientNet model, this method combines the Ghost Module idea of the GhostNet model and adds the SE channel attention mechanism in the Ghost Module for feature extraction training. The experimental results on the sensitive image data set constructed in this paper show that the accuracy of the proposed method in sensitive information detection is 94.46% higher than that of the similar methods. Then, the model is pruned through an ablation experiment, and the activation function is replaced by Hard-Swish, which reduces the parameters of the original model by 54.67%. Under the condition of ensuring accuracy, the detection time of a single image is reduced from 8.88ms to 6.37ms. The results of the experiment demonstrate that the method put forward has successfully enhanced the precision of identifying multi-class sensitive images, significantly decreased the number of parameters in the model, and achieved higher accuracy than comparable algorithms while using a more lightweight model design.

The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN (FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘)

  • Park, Byeong-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF