• Title/Summary/Keyword: higher order algorithms

Search Result 213, Processing Time 0.027 seconds

Time-domain Approaches for Input Disturbance Observer

  • Kim, Kyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.22-25
    • /
    • 2005
  • In the paper, algorithms for disturbance observers are newly presented in the time-domain. Attention is paid to observing a ramp disturbance by introducing an integral term to the output equation of a constant disturbance observer. In order to reduce the sensitivity to the measurement noise, the disturbance observer is combined with the state observer. It will be shown that the estimation dynamics can be arbitrarily chosen by assigning the eigenvalues of a characteristic equation. Also, we provide the analysis of observer behaviors subject to non-ramp-style disturbances. Finally, we propose the generalized disturbance observer that accurately estimates disturbances of higher order in time series expansion.

  • PDF

Second Order Suboptimal Power Allocation for MIMO-OFDM Based Cognitive Radio Systems

  • Nguyen, Tien Hoa;Nguyen, Thanh Hieu;Nguyen, Van Duc;Ha, Duyen Trung;Gelle, Guilllaume;Choo, Hyunseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2647-2662
    • /
    • 2014
  • This paper proposes an efficient and low complexity power-loading algorithm for MIMO-OFDM downlink based cognitive radio system that maximizes the sum rate of single secondary user (SU) under constraints on the tolerable interference thresholds between secondary user and primary user's frequency bands and the total transmission power. Our suboptimal algorithm is based on the $2^{nd}$ order interference tracking and nulling mechanism to allocate transmission power of the subcarriers among SU's scheme. The performance of our proposed suboptimal scheme is compared with the performance of the classical power loading algorithms, e.g., water filling, $1^{st}$ order interference tracking, nulling, and other suboptimal schemes. Numerical results show that our algorithm has low complexity but obtains a higher channel capacity than that of some previous suboptimal algorithms in some scenarios. We dedicate also that for a given interference threshold, the $2^{nd}$ order interference tracking mechanism has dynamic number of nulling position instead fixed number of nulling position.

Low Complexity Super Resolution Algorithm for FOD FMCW Radar Systems (이물질 탐지용 FMCW 레이더를 위한 저복잡도 초고해상도 알고리즘)

  • Kim, Bong-seok;Kim, Sangdong;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper proposes a low complexity super resolution algorithm for frequency modulated continuous wave (FMCW) radar systems for foreign object debris (FOD) detection. FOD radar has a requirement to detect foreign object in small units in a large area. However, The fast Fourier transform (FFT) method, which is most widely used in FMCW radar, has a disadvantage in that it can not distinguish between adjacent targets. Super resolution algorithms have a significantly higher resolution compared with the detection algorithm based on FFT. However, in the case of the large number of samples, the computational complexity of the super resolution algorithms is drastically high and thus super resolution algorithms are difficult to apply to real time systems. In order to overcome this disadvantage of super resolution algorithm, first, the proposed algorithm coarsely obtains the frequency of the beat signal by employing FFT. Instead of using all the samples of the beat signal, the number of samples is adjusted according to the frequency of the beat signal. By doing so, the proposed algorithm significantly reduces the computational complexity of multiple signal classifier (MUSIC) algorithm. Simulation results show that the proposed method achieves accurate location even though it has considerably lower complexity than the conventional super resolution algorithms.

3D Model Reconstruction Algorithm Using a Focus Measure Based on Higher Order Statistics (고차 통계 초점 척도를 이용한 3D 모델 복원 알고리즘)

  • Lee, Joo-Hyun;Yoon, Hyeon-Ju;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents a SFF(shape from focus) algorithm using a new focus measure based on higher order statistics for the exact depth estimation. Since conventional SFF-based 3D depth reconstruction algorithms used SML(sum of modified Laplacian) as the focus measure, their performance is strongly depended on the image characteristics. These are efficient only for the rich texture and well focused images. Therefore, this paper adopts a new focus measure using HOS(higher order statistics), in order to extract the focus value for relatively poor texture and focused images. The initial best focus area map is generated by the measure. Thereafter, the area refinement, thinning, and corner detection methods are successively applied for the extraction of the locally best focus points. Finally, a 3D model from the carefully selected points is reconstructed by Delaunay triangulation.

Identification of fault signal for rotating machinery diagnosis using Blind Source Separation (BSS) (BSS를 이용한 회전 기계 진단 신호 분석)

  • Seo, Jong-Soo;Lee, Jeong-Hak;J. K. Hammond
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.839-845
    • /
    • 2003
  • This paper introduces multichannel blind source separation (BSS) and multichannel blind deconvolution (MBD) based on higher order statistics of signals from convolutive mixtures. In particular, we are concerned with the case that the number of inputs is the same as the number of outputs. Simulations for two input two output cases are carried out and their performances are assessed. One of the major applications of those sequential algorithms (BSS and MBD) is demonstrated through the fault signal detection from only a single measurement of rotating machine, which offers a certain degree of practicability in the engineering field such as machine health monitoring or condition monitoring.

  • PDF

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

Free vibration analysis of FGM plates using an optimization methodology combining artificial neural networks and third order shear deformation theory

  • Mohamed Janane Allah;Saad Hassouna;Rachid Aitbelale;Abdelaziz Timesli
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.633-643
    • /
    • 2023
  • In this study, the natural frequencies of Functional Graded Materials (FGM) plates are predicted using Artificial Neural Network (ANN). A model based on Third-order Shear Deformation Theory (TSDT) and FEM is used to train the ANN model. Different training methods are tested to simulate input and output dependency. As this is a parametric model, several architectures and optimization algorithms were tested. The proposed model allows us to minimize the CPU time to evaluate candidate material properties for FGM plate material selection and demonstrate their influence on dynamic behavior. Consequently, the time required for the FGM design process (candidate materials for material selection) and the geometric optimization of the FGM structure would remain reasonable. The ANN model can help industries to produce FGM plates with good mechanical properties of the selected materials. I addition, this model can be used to directly predict vibration behavior by testing a large number of FGM plates, representing all possible combinations of metals and ceramics in today's industry, without having to solve any eigenvalue problems.

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

A Study on the Development of Drum-Type Boiler Simulator for Thermal Power Plant Using the Signal Flow Diagram Model (신호흐름도 모델을 이용한 화력 발전소 드럼형 보일러 시뮬레이터의 개발에 관한 연구)

  • ;;;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1269-1280
    • /
    • 1990
  • Owing to the need to accommodate the load variation, thermal power plants need a modern controller in order to achieve better frequency regulation, faster response and higher efficiency. For a successful development of the digital instrumentation and control system that can adopt advanced control algorithms, power plant simulator must be available for safe and convenient test. In this paper, a simple drum-type boiler model is proposed using Signal Flow Diagram that describes the system by a combination of basic time responses representing the relationships between cause and effect process variables. After verifying the model and thereafter building a simulator based on the proposed model, we tested the operation of the controller and stability or efficiency of the implemented control algorithms.

  • PDF

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.