• Title/Summary/Keyword: higher order accuracy

Search Result 782, Processing Time 0.025 seconds

A Recursive Estimation Algorithm for FIR System Using Higher Order Cumulants (고차 큐뮬런트를 이용한 FIR 시스템의 회귀 추정 알고리듬)

  • Kim, Hyoung-Ill;Yang, Tae-Won;Jeon, Bum-Ki;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.81-85
    • /
    • 1997
  • In this paper, a recursive estimation algorithm for FIR systems is proposed using the 3rd and 4th order cumulants. To obtain the Overdetermined Recursive Instrumental Variable(ORIV) method type algorithm, we transform the 3'th and 4'th order cumulant relationship to a certain matrix form which is consist of only output data. From the matrix form, we induce the proposed algorithm procedure following the ORIV method. The proposed algorithm provides improved estimation accuracy with smaller data and can be applied to a time varying system as well. In addition, it reduces the estimation error due to the additive Gaussian noise compared to conventional 2'rd order based algorithms since it only uses higher than 2'rd order cumulant. Simulation results are presented to compare the performance with other HOS-based algorithms.

  • PDF

A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.653-673
    • /
    • 2019
  • This work investigates a novel quasi-3D hyperbolic shear deformation theory is presented to discuss the buckling of new type of sandwich plates. This theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements through the thickness. The enhancement of this formulation is due to the use of only five unknowns by including undetermined integral terms, contrary to other theories where we find six or more unknowns. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. A new type of FGM sandwich plates, namely, both FGM face sheets and FGM hard core are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Analytical solutions are obtained for a simply supported plate. The accuracy of the present theory is verified by comparing the obtained results with quasi-3D solutions and those predicted by higher-order shear deformation theories. The comparison studies show that the obtained results are not only more accurate than those obtained by higher-order shear deformation theories, but also comparable with those predicted by quasi-3D theories with a greater number of unknowns.

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites with Multiple Delamination (다중 층간 분리부가 내재된 복합재 쉘 고차 지그재그 모델의 유한요소 해석)

  • 오진호;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.229-236
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection. which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the buckling problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The accuracy of the present element is demonstrated in the prediction of buckling loads and buckling modes of shells with multiple delaminations. The present shell element should serve as a powerful tool in the prediction of buckling loads and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions

  • Adim, Belkacem;Daouadji, Tahar Hassaine;Rabia, Benferhat;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • In this study, the bending and dynamic behaviors of laminated composite plates is examined by using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates under various boundary conditions. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. Numerical results for the bending and dynamic behaviors of antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of the present solution is demonstrated by comparison with solutions available in the literature. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Karthik, K.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1281-1299
    • /
    • 2016
  • This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Tension estimation method using natural frequencies for cable equipped with two dampers

  • Aiko Furukawa;Kenki Goda;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.361-379
    • /
    • 2023
  • In cable structure maintenance, particularly for cable-stayed bridges, cable safety assessment relies on estimating cable tension. Conventionally, in Japan, cable tension is estimated from the natural frequencies of the cable using the higher-order vibration method. In recent years, dampers have been installed on cables to reduce cable vibrations. Because the higher-order vibration method is a method for damper-free cables, the damper must be removed to measure the natural frequencies of a cable without a damper. However, cables on some cable-stayed bridges have two dampers: one on the girder side and another on the tower side. Notably, removing and reinstalling the damper on the tower side are considerably more time- and labor-intensive. This paper introduces a tension estimation method for cables with two dampers, using natural frequencies. The proposed method was validated through numerical simulation and experiment. In the numerical tests, without measurement error in the natural frequencies, the maximum estimation error among 100 models was 3.3%. With measurement error of 2%, the average estimation error was within 5%, with a maximum error of 9%. The proposed method has high accuracy because the higher-order vibration method for a damper-free cable still has an estimation error of 5%. The experimental verification emphasizes the importance of accurate damper modeling, highlighting potential discrepancies between existing damper design formula and actual damper behavior. By revising the damper formula, the proposed method achieved accurate cable tension estimation, with a maximum estimation error of approximately 10%.

Discontinuous finite-element quadrature sets based on icosahedron for the discrete ordinates method

  • Dai, Ni;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1137-1147
    • /
    • 2020
  • The discrete ordinates method (SN) is one of the major shielding calculation method, which is suitable for solving deep-penetration transport problems. Our objective is to explore the available quadrature sets and to improve the accuracy in shielding problems involving strong anisotropy. The linear discontinuous finite-element (LDFE) quadrature sets based on the icosahedron (in short, ICLDFE quadrature sets) are developed by defining projected points on the surfaces of the icosahedron. Weights are then introduced in the integration of the discontinuous finite-element basis functions in the relevant angular regions. The multivariate secant method is used to optimize the discrete directions and their corresponding weights. The numerical integration of polynomials in the direction cosines and the Kobayashi benchmark are used to analyze and verify the properties of these new quadrature sets. Results show that the ICLDFE quadrature sets can exactly integrate the zero-order and first-order of the spherical harmonic functions over one-twentieth of the spherical surface. As for the Kobayashi benchmark problem, the maximum relative error between the fifth-order ICLDFE quadrature sets and references is only -0.55%. The ICLDFE quadrature sets provide better integration precision of the spherical harmonic functions in local discrete angle domains and higher accuracy for simple shielding problems.

Development and Assessment of Higher Order Zig-zag Theory for smart composite plates under mechanical, thermal, and electric loads (열-전기-기계 하중을 받는 스마트 복합재 평판의 고차 지그재그 유한요소의 개발 및 성능 평가)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.191-194
    • /
    • 2001
  • A partially coupled thermo-piezoelectric-mechanical triangular finite element model of composite laminates with surface bonded piezoelectric actuators, subjected to externally applied mechanical load, temperature change load, electric field load is developed. The governing differential equations are obtained by applying the principle of free energy and variational techniques. A higher order zigzag theory displacement field is employed to accurately capture the transverse shear and normal effects in laminated composite plates of arbitrary thickness. Nonconforming shape functions by Specht are employed in the transverse displacement variables. Numerical examples demonstrate the accuracy and efficiency of the proposed triangular plate element.

  • PDF

New implicit higher order time integration for dynamic analysis

  • Alamatian, Javad
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.711-736
    • /
    • 2013
  • In this paper new implicit time integration called N-IHOA is presented for dynamic analysis of high damping systems. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes that only one set of weighted factors is calculated from the Taylor series expansion which leads to a simple approach and reduce the computational efforts. Moreover a comprehensive study on stability of the proposed method i.e., N-IHOA compared with IHOA integration which is performed based on amplification matrices proves the ability of the N-IHOA in high damping vibrations such as control systems. Also, wide range of numerical examples which contains single/multi degrees of freedom, damped/un-damped, free/forced vibrations from finite element/finite difference demonstrate that the accuracy and efficiency of the proposed time integration is more than the common approaches such as the IHOA, the Wilson-${\theta}$ and the Newmark-${\beta}$.