• Title/Summary/Keyword: higher mode effect

Search Result 522, Processing Time 0.05 seconds

Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge (헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구)

  • Bae, Byeongjun;Kim, Nam-Kyun;Yoon, Sung-Young;Shin, Jun-Seop;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.

Differential Changes in Commuter's Mode Choice after the Intergrated Public Transit System in Seoul Metropolitan City (서울시 대중교통체계 개편 이후 통근 교통수단 선택의 차별적 변화)

  • Lee, Hye-Seung;Lee, Hee-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.323-338
    • /
    • 2009
  • This study analyzes the changes in commuter's mode choice between 2002 and 2006 according to the implement of the integrated public transit system in Seoul metropolitan city. Especially this study focuses on differential changes in a transit modal choice among socioeconomic status, trip purpose and spatial characteristics of origin and destination. The probability of public transit use against automobile is modeled as a function of socioeconomic variables, spatial characteristics of origin and destination and the utility of the commuter's mode. The results from conditional logit model analyses suggest that people with lower income show the larger changes in the ratio of public transit choice between 2002-06. Also both higher density, more accessible to public transit and more diverse land uses in residence zone and in work place generally increase the ratio of public transit choice between 2002-06. Car and subway have the most strong alternative relation in commuter's mode choice. The findings give an important implication that the integrated public transit system has differential impacts on commuter's mode choice in Seoul.

The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate (초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향)

  • Kwon, Oh-Heon;Kwon, Woo-Deok;Kang, Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

Fuzzy Based Failure Mode and Effect Analysis (FMEA) of Hydrogen Production Process Using the Thermococcus Onnurineus NA1 (퍼지기반 해양 미생물 이용 수소 제조 공정의 고장유형 및 영향분석)

  • PARK, SUNG HO;AHN, JUNKEON;KIM, SU HYUN;YOO, YOUNG DON;CHANG, DAEJUN;KANG, SUNGKYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.307-316
    • /
    • 2018
  • In this study, the failure mode and effect analysis (FMEA) of hydrogen production process by using the Thermococcus onnurineus NA1 was conducted and advanced methodology to compensate the weakness of previous FMEA methodology was applied. To bring out more quantitative and precise FMEA result for bio-hydrogen production process, fuzzy logic and potential loss cost estimated from ASPEN Capital Cost Estimator (ACCE) was introduced. Consequently, risk for releasing the flammable gases via internal leakage of steam tube which to control the operating temperature of main reactor was caution status in FMEA result without applying the fuzzification and ACCE. Moreover, probability of the steam tube plugging caused by solid property like medium was still caution status. As to apply the fuzzy logic and potential loss cost estimated from ACCE, a couple of caution status was unexpectedly upgraded to high dangerous status since the potential loss cost of steam tube for main reactor and decrease in product gases are higher than expected.

Dynamic Behaviors of Skewed Bridge with PSC Girders Wrapped by Steel Plate

  • Rhee, In-Kyu;Kim, Lee-Hyeon;Kim, Hyun-Min;Lee, Joo-Beom
    • International Journal of Railway
    • /
    • v.3 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper attempts to extract the fundamental dynamic properties, i.e. natural frequencies, damping ratios of the 48 m-long, $20^{\circ}$ skewed real bridge with PSC girders wrapped by a steel plate. The forced vibration test is achieved by mounting 12 Hz-capacity of artificial oscillator on the top of bridge deck. The acceleration histories at the 9 different locations of deck surface are recorded using accelerometors. From this full-scaled vibration test, the two possible resonance frequencies are detected at 2.38 Hz and 9.86 Hz of the skewed bridge deck by sweeping a beating frequency up to 12 Hz. The absolute acceleration/energy exhibits much higher in case of higher-order twist mode, 9.86 Hz due to the skewness of bridge deck which leads asymmetric situation of vibration. This implies the test bridge is under swinging vertically in fundamental flexure mode while the bridge is also flickered up and down laterally at 9.86 Hz. This is probably by asymmetric geometry of skewed deck. A detailed 3D beam-shell bridge models using finite elements are performed under a series of train loads for modal dynamic analyses. Thereby, the effect of skewness is examined to clarify the lateral flickering caused by asymmetrical geometry of bridge deck.

  • PDF

Experimental Studies of Characteristics of Strength and Deformation Behaviour of Frozen and Cyclic Frozen-thawed Clayey Soils (동결 및 동결-융해작용을 받는 점성토의 강도와 그의 변형거동)

  • 유능환;유영선;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.112-119
    • /
    • 1991
  • Some experiments were carried out to investigate the effects of freezing and thawing on the strength and strain characteristics of alluvial silty clay under the different temperatures, loading and moisture conditions. The results were as follows; 1. The soil used was proved to be consisted of silty clay with honey-combed structure, and showed higher dilatancy, frost activity and lower stability in natural state. 2. Soil treated with freezing and thawing cycles showed lower compressive strength compared with the non treated, The strength decreased with incement of freezing and thawing cycles. It's shapes of stress-strain curves were flat and did not formulate a peak while the peak strength of higher moisture content soil decreased with the increment of moisture content. It's decrement ratio was most distinctly shown at the first one cycle of freezing and thawing. 3. The cohesion decreased due to freezing and thawing cycles but internal frcition angle was not changed. 4. The liquid limit decreased with increment of freezing and thawing cycles, and became almost constant after three cycles of freezing and thawing. 5. The strength under simple loading at failure mode was appeared to be higher compared with the cyclic loading after freezing and thawing but initial moisture content effect was not observed. 6. Ice lense was not observed within 50% of ice content ratio but observed over 100%. The higher the ice content ratio, the higher the peak strength. As a matter of fact, it seems that an optimum ice content ratio exists for plastic mode and the least compressive strength.

  • PDF

Waveguiding Effect in Electroabsorption Modulators: Passivation Layers and Their Impact on Extinction Ratios

  • Shin, Dong-Soo
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2005
  • Waveguide structures of the stand-alone electroabsorption (EA) modulator and the electroabsorption modulated laser (EML) are investigated using the 3D beam propagation method. The EA waveguide structures with InP-based passivation layers show saturation in the extinction ratio (ER) due to the stray light traveling through the passivation layers. This paper demonstrates that narrower passivation layers suppress stray-light excitation in the EA waveguide, increasing the ER. A taper structure in the isolation section of the EML waveguide can reduce the mode mismatch and suppress the excitation of the stray light, increasing the ER further. Low-index-polymer passivation layers can confine the mode more tightly in the active waveguide, yielding an even higher ER.

  • PDF

The vibration isolating system using a magnetostrictive actuator (자기 변형 작동기를 이용한 진동 절연 시스템)

  • 정학근;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.276-279
    • /
    • 1997
  • When a magnetostrictive material is exposed to a magnetic field, its geometry changes due to a magnetostrictive effect. The magnetostriction is analogous to the piezoeletricity. The displacement of the magnetostrictive material is proportional to the applied current while that of the piezoelectric material is proportional to the voltage. A magnetostrictive material generates large displacement and higher compressive force compared with a piezoeletric material. These advantages provide a good performance of a vibration isolation of a platform. In this work, it is applied to a driving actuator for vibration isolation of a platform. The properties of a magnetostrictive material are investigated in terms of hysteresis and displacement vs. applied current for a various preload. Modeling of the displacement of the vibration isolating actuator is performed as it behaves as a flow source. A sliding mode controller is designed to demonstrate the ability of the magnetostrictive actuator to reduce the vibration at the platform. The effectiveness of the proposed scheme is demonstrated through experimental works. The experimental results of the vibration of the platform axe presented in terms of time response and frequency response.

  • PDF

Quantitative Analysis of Wear Debris for Surface Modification Layer by Ferrography (Ferrography에 의한 표면개질층의 마모분 정량분석)

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.265-271
    • /
    • 1999
  • Wherever there are rotating equipment and contact between surface, there is wear and the generation of wear particles. The particles contained in the lubricating oil carry detailed and important information about the condition monitoring of the machine. This information may be deduced from particle shape, composition, size distribution, and concentration. Therefore, This paper was undertaken to Ferrography system of wear debris generated from lubricated moving machine surface. The lubricating wear test was performed under different experimental conditions using the Falex wear test of Pin and V-Block type by Ti(C, N) coated. It was shown from the test results that wear particle concentration (WPC) and wear severity Index( $I_{S}$), size distribution in normal and abnormal wear have come out all the higher value by increases sliding friction time. Wear shape is observed on the Ferrogram it was discovered a thin leaf wear debris as well as ball and plate type wear particles. This kind of large wear shape have an important effect not only metals damage, but also seizure phenomenon.

Tribological Characteristics of Carbon Fiber Reinforced Plastics Prepared by Ion-Assisted Reaction (이온도움반응법에 의한 탄소섬유복합재의 트라이볼로지 특성연구)

  • 오성모;김정기;이봉구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.103-108
    • /
    • 2004
  • Carbon fiber reinforced composites(CFRP) were fabricated with phenolic resin matrix by hot press molding, and its surface was modified by the ion-assisted reaction process. When we tested the friction coefficient and wear rate variation and observed the effect of fibers with respect to friction and wear characteristics, the amount of pitch based carbon fiber was 45wt% and the average friction coefficient was the lowest at 0.12. When the amount of ion-irradiation was $1\times10^{l6}ions/cm^2$, the friction coefficient of the composites was about 0.12 and the wear mode was stable, whereas, the friction coefficient of the non-treated composites was about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5\times10^{l6}ions/cm^2$$1\times10^{l6}ions/cm^2$ion-irradiation case.