The two dimensional size effect of specimen gauge section (
Currently, the rewards programs offered by many companies to strengthen customer relationships have been working quite well. In addition, many companies' rewards programs, designed for stabilizing revenue, are recognized to be effective. However, these rewards programs are not significantly differentiated between companies and there are no accurate conclusions currently, which can be made about their effects. Because of this, a company with a customer rewards program may not comprehend the true level of active participation. In this environment some companies' rewards programs inadvertently hinder business profitability as a side effect while attempting to increase customer loyalty. In fact, airline and oil companies pass on the financial cost of their programs to the customer, and as a result, they have been criticized publicly. The result of this is that the corporations with bad rewards programs tend to get a bad image. In this study of stores' rewards programs, we centered our focus on the design of the program. The main problem in this study is to recognize the financial value of the rewards program and whether it can create a competitive edge for the companies despite the cost issues experienced by them. Customers receiving financial rewards for their business may be just as satisfied with a particular company or store versus those who are not, and the program, perhaps, does not form a distinctive competitive advantage. When the customer is deciding between competing companies to secure their product needs with, we wanted to figure out how much of an affect a valuable reward program had on their decision making. To evaluate this, we set the first hypothesis as, "based on the level of involvement of the customers, there is a difference between customers' preferences for rewards programs." In the results of Experiment 1 we saw that in a financial compensation program for high-involvement groups and low-involvement groups, significant differences appeared and Hypothesis 1 was partially supported. As for the second hypothesis that "customers will have different preferences between a financial rewards programs (SE) and a joint rewards programs (JE)," the analysis showed that the preference for JE was significantly higher than that for other programs. In addition, through Experiment 2, we were able to find meaningful results, which revealed that consumers have shown a significant difference in their preferences between SE and JE. The purpose of these experiments was to enable the designing of a rewards program by learning how to enhance service information distribution and strengthen customer relationships. From the results, there should be a great amount of value for future service-related endeavors and academic research programs. The research is significant, because the results can be found to have a positive effect on reward program designs however, it does have the following limitations. First, this study was performed using an experiment, and all experiments have limitations. Second, although there was an individual evaluation and a joint evaluation, setting a proper evaluation criteria was difficult. In this study, 1,000 Korean won (KRW) in the individual evaluation had a value of 2 points, and, in the joint evaluation, 1,000 KRW had a value of 1 point. There may have been alternative ways to differentiate the evaluations to obtain the proper results. In this study, since there was no funding, the experiments were performed orally however, this was complementary to the study. Third, the subjects who participated in this experiment were students. Conducting this study through experimentation was unavoidable for us, and future research should be conducted using an actual program with the target customers.
This in vitro study examined the effect of surface defects on cutting blades on the extent of the cyclic fatigue fracture of HEROShaper Ni-Ti rotary files using fractographic analysis of the fractured surfaces. A total of 45 HEROShaper (MicroMega) Ni-Ti rotary flies with a #30/.04 taper were divided into three groups of 15 each. Group 1 contained new HEROShapers without any surface defects. Group 2 contained HEROShapers with manufacturing defects such as metal rollover and machining marks. Croup 3 contained HEROShapers that had been clinically used for the canal preparation of 4-6 molars A fatigue-testing device was designed to allow cyclic tension and compressive stress on the tip of the instrument whilst maintaining similar conditions to those experienced in a clinic. The level of fatigue fracture time was measured using a computer connected the system. Statistical analysis was performed using a Tukey's test. Scanning electron microscopy (SEM) was used for fractographic analysis of the fractured surfaces. The fatigue fracture time between groups 1 and 2, and between groups 1 and 3 was significantly different (p<0.05) but there was no significant difference between groups 2 and 3 (p>0.05). A low magnification SEM views show brittle fracture as the main initial failure mode At higher magnification, the brittle fracture region showed clusters of fatigue striations and a large number of secondary cracks. These fractures typically led to a central region of catastrophic ductile failure. Qualitatively, the ductile fracture region was characterized by the formation of microvoids and dimpling. The fractured surfaces of the HEROShapers in groups 2 and 3 were always associated with pre-existing surface defects. Typically, the fractured surface in the brittle fracture region showed evidence of cleavage (transgranular) facets across the grains, as well as intergranular facets along the grain boundaries. These results show that surface defects on cutting blades of Ni-Ti rotary files might be the preferred sites for the origin of fatigue fracture under experimental conditions. Furthermore this work demonstrates the utility of fractography in evaluating the failure of Ni-Ti rotary flies.
In order to improve practical utility of agro-microorganisms (AMs) which had been cultured and disseminated to promote plant growth and to control crop diseases, 51 isolates of AMs were collected from 18 agricultural extension centers in local government and screened for multi-functions such as antifungal activity, activities of phosphorus solubilization, IAA and siderophore production, nitrogen fixation, and hydrolytic enzyme activity. Finally we selected one isolate showing good antifungal activity and multi-functions related to plant growth and disease control. The selected isolate, Paenibacillus polymyxa CW, showed good inhibitory effect against plant pathogens, Pyricularia gresea, Colletotrichum acutatum, Fusarium oxysporum, Phomopsis sp., Aspergillus niger, Rhizoctonia solani and Phytophthora capsici. Suppressive effect of P. polymyxa CW against the used plant pathogens except for R. solani was much higher than that of P. polymyxa AC-1 storing in National Academy of Agricultural Science. We found P. polymyxa CW isolate showed good activity in siderophore and IAA formation, and nitrogen fixation. With P. polymyxa CW isolate, siderophore formation activity was similar to that of P. polymyxa AC-1, but IAA formation and nitrogen fixation activity was much higher than that of P. polymyxa AC-1. However neither P. polymyxa CW nor P. polymyxa AC-1 showed hydrolytic enzyme (chitinase, pectinase and cellulase) activity. The treatment of P. polymyxa CW with culture suspension of different cell density (
Objectives: The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods: Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15), according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond) and application methods. The adhesive systems were applied on the dentin as follows: 1) The single coating, 2) The double coating, 3) Manual agitation, 4) Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results: Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions: In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.
Bacterial growth and corresponding consumption of carbon and phosphorus were examined in which tap water samples containing a very low concentration of free chlorine were supplemented with organic carbon and/or phosphorus. The experiments were performed in a fed-batch mode under a controlled temperature of
The purpose of this study was to determine whether there were differences in shear bond strength to human dentin using IDS technique compared with DDS. Forty freshly extracted human molars were and devided into 4 groups. The control group specimens were, on the morrow of tooth preparation, light-cured after application of dentin bonding agent and cemented with resin cement. The IDS/SE(immediate dentin sealing, Clearfil
In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70