• Title/Summary/Keyword: higher mode effect

Search Result 522, Processing Time 0.036 seconds

Comparativy Characteristics between Microstrip-Line Resonator(HR) and Dielectric Resonator(DR) for Injection-Locked Oscillators (ILOs)

  • Kim, Nam-Young;Kim, Jong-Heon;Hong, Ui-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.239-244
    • /
    • 1997
  • A hair-pin shaped microstrip-line resonator and a dielectric resonator for injection-locked oscillators have been designed and fabricated for the comparative studying of their characteristics. In general, a commonly used dielectric resonator shows lower phase noise value than hair-pin resonator in the free-running mode. In the injection-locked mode, however, a hair-pin resonator is superior to the dielectric resonator; the wider tuning range, the 22% improved locking bandwidth, the lower noise effect, the short term stability, and the higher power level. The planar structure of a hair-pin shaped microstrip-line resonator will be easily applied to monolithic microwave integrated circuits.

  • PDF

A Study on the Heavy Impact Sound Insulation Performance of Apartments depending on the Shape of Receiving Room (공동주택 수음실의 평면형태에 따른 중량충격음 특성 변화 연구)

  • Gi, No-Gab;Kim, Hang;Choi, Eun-Seok;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1317-1320
    • /
    • 2006
  • This study compared the floor impact sound level of rectangular receiving room type to differed receiving room types to analyze effect of room mode. The floor impact sound level of master room were higher than the level of living room which resulted from room mode. The result showed that the level of low frequency bandwidth in the location varied with receiving room types were lower than general measuring point of rectangular receiving room.

  • PDF

Comparative Performances between Hair-pin Shaped Microstrip-line Resonator and Dielectric Resonator for Injection Locked Oscillators at 11GHz

  • Lee, Du-Han;Kim, Kye-Hun;Kim, Nam-Youn;Kim, Jong-Heon;Hong, Ui-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.171-176
    • /
    • 1997
  • A hair-pin shaped microstrip-line resonator and dielectric resonator for injection-locked oscillators have been designed and fabricated for the comparative studying of their performances. In general, a commonly used dielectric resonator shows lower phase noise value than hair-pin resonator in the free-running mode. In the injection-locked mode, however, a hair-pin resonator is superior to the dielectric resonator, the wider tuning range, the 22% improved locking bandwidth, the lower noise effect, the short term stability, and the higher power level. The planar structure of a hair-pin shaped microstrip-line resonator will be easily applied to monolithic microwave integrated circuits.

  • PDF

Modal Analysis of Point and Discretized Continuous Spectra for Metal-Insulator-Metal Waveguides in the Terahertz Region

  • Hur, Jun;Choo, Hosung;Park, Jong-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1644-1654
    • /
    • 2018
  • Eigenvalue distributions for a periodic metal-insulator-metal waveguide, classified into the point spectrum and the discretized continuous spectrum (DCS), are investigated as functions of frequencies, gap widths, and periods. Muller's method is suggested for solving exact eigenvalues, and we propose the scheme for finding proper initial values in the Muller's method by considering only ${\Re}e({\varepsilon}_r)$ in the dispersion equation. We then find that anti-crossing behavior, repulsive effect between the point spectrum and the DCS, becomes stronger when the real parts of the roots in the point spectrum have smaller values. Finally, we examine the transmittances of a single subwavelength slit for real metals using the mode matching technique. The transmittances in real metals similarly follow those of the perfect electric conductor (PEC) at low frequencies, while the patterns at higher frequencies begin to differ from the PEC.

Effect of Reinforcement Content on Damping Capacities for Castable Aluminum Matrix Composites Reinforced with SiC and Graphite Particles (SiC와 흑연 입자 강화 주조용 Al기지 복합재료의 진동감쇠능에 미치는 강화입자조성의 효과)

  • 최유송
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • Loss factors of A356, Mn-Cu alloy and aluminum matrix composites reinforced with $SiC_p$ and Ni-coated graphite particles at various contents have been investigated using clamped-free cantilever beam method. The loss factors of half-power bandwidth of the specimens were measured over a wide range of frequencies from 50 to 3300Hz. Among the specimens, Al-10%$SiC_p$-10%$C_p$ showed the highest loss factor at the mode I, while Mn-Cu alloy showed the highest loss factors at the modes II and III. Consequently, at the mode I the Al-10%$SiC_p$--10%$C_p$ showed the loss factor of 0.00093, which is 2.64 and 1.58 times higher than those of A356 and Mn-Cu alloy, respectively.

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.

Investigation of Temperature Effect on Electrode Reactions of Molten Carbonate Electrolysis Cells and Fuel Cells using Reactant Gas Addition Method

  • Samuel Koomson;Choong-Gon Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • The impact of temperature on electrode reactions in 100 cm2 molten carbonate cells operating as Fuel Cells (FC) and Electrolysis Cells (EC) was examined using the Reactant Gas Addition (RA) method across a temperature range of 823 to 973 K. The RA findings revealed that introduction of H2 and CO2, reduced the overpotential at Hydrogen Electrode (HE) in both the modes. However, no explicit temperature dependencies were observed. Conversely, adding O2 and CO2 to the Oxygen Electrode (OE) displayed considerable temperature dependencies in FC mode which can be attributed to increased gas solubility due to the electrolyte melting at higher temperatures. In EC mode, there was no observed temperature dependence for overpotential. Furthermore, the addition of O2 led to a decrease in overpotential, while CO2 addition resulted in an increased overpotential, primarily due to changes in the concentration of O2 species.

Characteristics of Nanoscale Modes Guided by the Total External Reflection of Surface Plasmon-Polaritons (표면 플라즈몬-폴라리톤의 외부-전반사에 의해 도파되는 나노 크기 모드의 특성)

  • Seol, Kang Hee;Song, Seok Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Total external reflection (TER), which does not occur on a dielectric interface, is a unique feature of surface plasmon-polaritons (SPP). We propose an SPP-TER waveguide structure consisting of low-index dielectric nanocore covered with high-index dielectric on a flat metal surface. The SPP mode confined in the nanocore by the TER effect has a mode size much smaller than wavelength scale. Numerical comparison of mode characteristics between the SPP-TER waveguides and other total-internal-reflection-based waveguides such as metal or high-index dielectric nanowires show that the SPP-TER structures can possess higher modal gain for applications of nanocavity lasers.

Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer

  • Won, Kyung-Rok;Chong, Song-Ho;Hong, Nam-Euy;Kang, Sang-Uk;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.466-473
    • /
    • 2013
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for heat-treated wood under different conditions. The effect of heat treatment on the bending strength and NDE technique using the resonance frequency by impact hammer and force transducer mode for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. In all conditions, It was found that there were a high correlation at 1% level between dynamic modulus of elasticity and MOR, and static modulus of elasticity and MOR. However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by impact hammer mode is more useful as a nondestructive evaluation method for predicting the MOR of heat-treated wood under different temperature and species conditions.

The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향)

  • 윤한익;손인수;진종태;김현수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.