• Title/Summary/Keyword: high-temperature state

Search Result 1,596, Processing Time 0.028 seconds

Experiment and Prediction of Nonlinear Behavior at High Temperatures of Ferroelectric Ceramics Switched by Electric Field at Room Temperature

  • Ji, Dae Won;Kim, Sang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.235-242
    • /
    • 2017
  • Changes in polarization and thermal expansion coefficients during temperature increase of a poled lead zirconate titanate (PZT) cube specimen switched by an electric field at room temperature are measured. The measured data are analyzed to construct governing differential equations for polarization and strain changes. By solving the differential equations, an experimental formula for the high temperature behavior of ferroelectric materials is obtained. It is found that the predictions by the formula are in good agreement with measures. From the viewpoint of macroscopic remnant state variables, it appears that the processes of electric field-induced switching at different temperatures are identical and independent of temperature between $20^{\circ}C$ and $110^{\circ}C$.

Temperature Control of Superheater Steam in Thermal Power Plant (화력발전소의 과열기증기의 온도제어)

  • Shin, Hwi-Beom;Lee, Soon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2006-2011
    • /
    • 2010
  • The superheater in the thermal power plant makes the wet steam into the dry steam with high temperature and high pressure by using the boiler heat. The dry steam pressure rotates the turbine-generator system. The efficiency and life time of the boiler heavily depends on the steam temperature regulation. The steam temperature can be deviated from the reference by the MW demand of the power plant. It is therefore required that the PI(proportional-integral) controller should be robust against the disturbance such as the MW demand. In this paper, the PI controller with the integral state predictor is proposed and applied to regulate the steam temperature of the superheater, and it is compared with the conventional PI controller operated in the thermal power plant in view of control performance.

A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석)

  • Ahn, Dong-Gyu;Kim, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

Design of Reverse Brayton Cycle Cryocooler System for HTS Cable Cooling (HTS 케이블 냉각용 역브레이튼 사이클 극저온 냉동기 설계에 관한 연구)

  • 박재홍;권용하;김영수;박성출
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • The high temperature superconductivity(HTS) cable must be cooled below the nitrogen liquefaction temperature to applicate the cable in power generation and transmi-ssion system under the superconducting state. To obtain superconducting state. a reliable cryocooler system is required. Structural and thermal design have been performed to design cryocooler system operated with reverse Brayton cycle using gas neon as refrigerant. This cryocooler system consists of compressor. recuperator. coldbox. control valves and has 1 kW cooling capacity. Heat loss calculation was conducted for the given cryocooler system by considering the conduction and radiation through the multi-layer insulation(MLI) and high vacuum. The results can be summarized as: conduction heat loss is 7 W in valves and access port and radiation heat loss is 18 W through the surface of cryocooler. The full design specifications were discussed and the results were applied to construct in house HTS cable cooling system.

Effect of Mixing and Placing in Hot Weather on Hardened Concrete Properties

  • Ham, Suyun;Oh, Taekeun
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 2013
  • Portland cement concrete exposed to high temperatures during mixing, transporting, casting, finishing, and curing can develop undesirable characteristics. Applicable requirements for such the hot weather concrete differ from country to country and government agencies. The current study is an attempt at evaluating the hardened properties of the concrete exposed to hot weather in fresh state. First of all, this study reviews the current state of understanding and practice for hot weather concrete placement in US and then roadway sites with suspected hot weather concrete problems were investigated. Core samples were obtained from the field locations and were analyzed by standard resonance frequency analysis and the boil test. Based on the results, there does not appear to be systematic evidence of frequent cracking problems related to high temperature placement. Thus, the suspicious deteriorations which are referable to hot weather concreting would be due to other factors.

A Electrical Characteristic Simulation and Test for the Steady and Transient State in the 22.9kV HTS Cable Distribution System. (22-9kV배전계통에 대한 초전도케이블의 정상 및 과도상태에 대한 전기적 특성 시험 및 시뮬레이션 결과 검토)

  • Lee, Geun-Joon;Hwnag, Si-Dol;Yang, Byeong-Mo;Lee, Hyun-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2316-2321
    • /
    • 2009
  • With rapid development of world economics, electricity demand in metropolitan area has been increased dramatically. HTS(High Temperature Superconducting) cable is one of most promising technology to solve the bottleneck of electric network. However, HTS cable is not considered as matured technology yet to power system planners because of its different characteristics with conventional metal conductors. This paper suggests the comparison results of HTS cable simulation and experiment on steady state operation, also give the simulation results on transient characteristics of HTS cable components. This results could devote not only to discuss the security of HTS cable operation, but also to design power system oriented HTS cable.

Processing of $Si_3N_4/SiC$ and Boron-Modified Nanocomposites Via Ceramic Precursor Route

  • Lee, Hyung-Bock;Rajiv S. Mishra;Matt J. Gasch;Han, Young-Hwan;Amiya K. Mukherjee
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.245-249
    • /
    • 2000
  • Consolidation of amorphous powders is emerging as a route for synthesis of high strength composite materials. Diffusion processes necessary for consolidation are expected to be more rapid in amorphous state(SRO) than in the crystalline state(LRO). A new synthesis technique of exploiting polymeric ceramic precursors(polysilazane and polyborosilazane) is derived for Si$_3$N$_4$/SiC and boron-modified nanocomposites for extremely high temperature applications up to 200$0^{\circ}C$. The characterization methods include thermal analysis of DTA, and XRD, NMR, TEM, after pyrolysis, as a function of time and temperature.

  • PDF

High Temperature Creep Behavior of Cr3C2 Composites (크롬-카바이드 복합체의 고온 크리프 거동)

  • 김지환;한동빈;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1219-1226
    • /
    • 1995
  • Creep behaviors of Cr3C2 composites containing 90 wt% Cr3C2 and 10 wt% Ni were studied at high temperature. Compression tests at 100$0^{\circ}C$ and bending tests at 100$0^{\circ}C$ and 105$0^{\circ}C$ were done in argon environment. In all test conditions primary and steady-state creep behaviors were observed. Stress exponent and activatiion energy were determined from the experimental data. By microstructural analysis of Cr3C2 composites after creep test, the separate agglomerations of Ni phase were observed. Numerical analysis was also studied to analyze bending creep behaviors of Cr3C2 by assumming different tensile and compressive creep behavior in a bending sample. From the analysis, it was found that the stress state at the compressive region as applied stress increased. The observed creep rates were compared with the predicted creep rates by estimating power-law creep parameters from bending test data.

  • PDF

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

Markov Chain Properties of Sea Surface Temperature Anomalies at the Southeastern Coast of Korea (한국 남동연안 이상수온의 마르코프 연쇄 성질)

  • Kang, Yong-Q.;Gong, Yeong
    • 한국해양학회지
    • /
    • v.22 no.2
    • /
    • pp.57-62
    • /
    • 1987
  • The Markov chain properties of the sea surface temperature (SST) anomalies, namely, the dependency of the monthly SST anomaly on that of the previous month, are studied based on the SST data for 28years(1957-1984) at 5 stations in the southeastern coast of Korea. Wi classified the monthly SST anomalies at each station into the low, the normal and the high state, and computed transition probabilities between SST anomalies of two successive months The standard deviation of SST anomalies at each station is used as a reference for the classification of SST anomalies into 3states. The transition probability of the normal state to remain in the same state is about 0.8. The transition probability of the high or the low states to remain in the same state is about one half. The SST anomalies have almost no probability to transit from the high (the low) state to the low (the high) state. Statistical tests show that the Markov chain properties of SST anomalies are stationary in tine and homogeneous in space. The multi-step Markov chain analysis shows that the 'memory' of the SST anomalies at the coastal stations remains about 3 months.

  • PDF