• 제목/요약/키워드: high-temperature stability

검색결과 1,956건 처리시간 0.026초

AC PDP의 저온에서의 오방전 개선을 위한 구동 방법 (Driving Method for Mis-discharge Improvement at Low Temperature in AC PDP)

  • 김근수;이석현
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1157-1165
    • /
    • 2009
  • In AC-PDP, it is necessary to achieve high luminance efficiency, high luminance and high definition by adopting technologies such as high xenon concentration, MgO doping, and long gap. However, it is very difficult to apply above technologies because they make the driving voltage margin reduced. Especially, high Xe concentration technology for high efficacy makes not only the driving voltage margin reduced but also the stability of reset discharge decreased at low temperature. In this paper, we studied temperature and voltage dependent stability of reset discharge and present the experimental results of the discharge characteristics at low temperature. In addition, we suggested the mechanism of bright noise and black noise at low temperature. Finally, we proposed double reset waveform to improve the bright noise and descending scan time method to improve the black noise.

듀플렉스 스테인레스 소재의 고온 변형 안정성 및 어닐링 온도에 따른 특성 분석 (Analysis of High Temperature Deformation Stability and Properties of Duplex Stainless Steels According to Annealing Temperature)

  • 권기현;나영상;유위도;이종훈;박용호
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.495-502
    • /
    • 2012
  • The aim of this study was to analyze high temperature deformation stability and properties of duplex stainless steels(DSS) according to annealing temperature. In order to analyze high temperature deformation stability, a number of compression tests were carried out with a stain rate of $10^{-2}s^{-1}{\sim}10s^{-1}$ up to a compression ratio of 50% in a temperature range of $950^{\circ}C-1300^{\circ}C$. The analysis of high temperature deformation stability of DSS was performed based on the Ziegler model. In order to analyze the high temperature properties of DSS, annealing treatments were conducted by isothermal holding for 1 hr at $950^{\circ}C$ to $1300^{\circ}C$ with $50^{\circ}C$ intervals followed by water cooling. The hardness and tensile tests were performed on specimens with different volume fractions of constituent phases, such as austenite, ferrite and sigma. The hardness and tensile strength of 2507 according to the annealing temperature are better than those of 2205. The strain rate sensitivity and Ziegler parameter are higher in 2205 than in 2507 as a whole, which implies that 2205 is better than 2507 in terms of forgeability at high temperature.

Rock mechanics and wellbore stability in Dongfang 1-1 Gas Field in South China Sea

  • Yan, Chuanliang;Deng, Jingen;Cheng, Yuanfang;Yan, Xinjiang;Yuan, Junliang;Deng, Fucheng
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.465-481
    • /
    • 2017
  • Thermal effect has great influence on wellbore stability in Dongfang 1-1 (DF 1-1) gas field, a reservoir with high-temperature and high-pressure. In order to analyze the wellbore stability in DF1-1 gas field, the variation of temperature field after drilling was analyzed. In addition, the effect of temperature changing on formation strength and the thermal expansion coefficients of formation were tested. On this basis, a wellbore stability model considering thermal effect was developed and the thermal effect on fracture pressure and collapse pressure was analyzed. One of the main challenges in this gas field is the decreasing temperature of the wellbore will reduce fracture pressure substantially, resulting in the drilling fluid leakage. If the drilling fluid density was reduced, kick or blowout may happen. Therefore, the key of safe drilling in DF1-1 gas field is to predict the fracture pressure accurately.

Thermal Stability of $MnOx-WO_3-TiO_2$ Catalysts Prepared by the Sol-gel Method for Low-temperature Selective Catalytic Reduction

  • 신병길;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • The selective catalytic reduction (SCR) of NOx by $NH_3$ is well known as one of the most convenient, efficient, and economical method to prevent NOx emission in flue gas from stationary sources. The degradation of the reactivity is the obstacle for its real application, since high concentrations of sulfur dioxide and thermal factor would deactivate the catalyst. It is necessary to develop high stability of catalysts for low-temperature SCR. Among the transition metal oxides, $WO_3$ is known to exhibit high SCR activity and good thermal stability. The $MnOx-WO_3-TiO_2$ catalysts prepared by sol-gel method with various $WO_3$ contents were investigated for low-temperature SCR. These catalysts were observed in terms of micro-structure and spectroscopy analyses. The $WO_3$ catalyst as a promoter is used to enhance the thermal stability of catalyst since it increases the phase transition temperature of $TiO_2$ support. It was found that the addition of tungsten oxides not only maintained the temperature window of NO conversion but also increased the acid sites of catalyst.

  • PDF

실리콘 함유 DLC 박막의 내열특성 (Thermal Stability of Silicon-containing Diamond-like Carbon Film)

  • 김상권;김성완
    • 열처리공학회지
    • /
    • 제23권2호
    • /
    • pp.83-89
    • /
    • 2010
  • Diamond-like carbon (DLC) coating was studied to be a good tribological problem-solver due to its low friction characteristics and high hardness. However, generally hydrogenated DLC film has shown a weak thermal stability above $300^{\circ}C$. However, the silicon doping DLC process by DC pulse plasma enhanced chemical vapor deposition (PECVD) for the new DLC coating which has a good characterization with thermal stability at high temperature itself has been observed. And we were discussed a process for optimizing silicon content to promote a good thermal stability using various tetramethylsilane (TMS) and methane gas at high-temperature. The chemical compositions of silicon-containing DLC film was analyzed using X-ray photoelectron spectroscopy (XPS) before and after heat treatment. Raman spectrum analysis showed the changed structure on the surface after the high-temperature exposure testing. In particular, the hardness of silicon-containing DLC film showed different values before and after the annealing treatment.

Geomechanical study of well stability in high-pressure, high-temperature conditions

  • Moradi, Seyyed Shahab Tabatabaee;Nikolaev, Nikolay I.;Chudinova, Inna V.;Martel, Aleksander S.
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.331-339
    • /
    • 2018
  • Worldwide growth in hydrocarbon and energy demand is driving the oil and gas companies to drill more wells in complex situations such as areas with high-pressure, high-temperature conditions. As a result, in recent years the number of wells in these conditions have been increased significantly. Wellbore instability is one of the main issues during the drilling operation especially for directional and horizontal wells. Many researchers have studied the wellbore stability in complex situations and developed mathematical models to mitigate the instability problems before drilling operation. In this work, a fully coupled thermoporoelastic model is developed to study the well stability in high-pressure, high-temperature conditions. The results show that the performance of the model is highly dependent on the truly evaluated rock mechanical properties. It is noted that the rock mechanical properties should be evaluated at elevated pressures and temperatures. However, in many works, this is skipped and the mechanical properties, which are evaluated at room conditions, are entered into the model. Therefore, an accurate stability analysis of high-pressure, high-temperature wells is achieved by measuring the rock mechanical properties at elevated pressures and temperatures, as the difference between the model outputs is significant.

Stability of superconductor by integration formula

  • Seol, S.Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권3호
    • /
    • pp.1-5
    • /
    • 2019
  • The superconductor stability theories are consistently described by the integral formula. If the defined stability function is a simple decreasing function, it becomes a cryogenic stability condition. If the stability function has a maximum value and a minimum value, and the maximum value is less than 0, then it is a cold-end recovery condition. If the maximum value is more than 0, it can be shown that the unstable equilibrium temperature, that is, the MPZ (minimum propagation zone) temperature distribution can exist. The MPZ region is divided into two regions according to the current ratio. At the low current ratio, the maximum dimensionless temperature is greater than 1, and at the relatively high current ratio, the maximum dimensionless temperature is less than 1. In order to predict the minimum quench energy, the dimensionless energy was obtained for the MPZ temperature distribution. In particular, it was shown that the dimensionless energy can be obtained even when the MPZ maximum temperature is 1 or more.

Hot-Tube Oxidation Test에 의한 디젤엔진오일의 산화안정성 평가 (Evaluation of Oxidation Stability for Diesel Engine Oil by Hot-Tube Oxidation Test)

  • 정근우;조원오;김영운;서인옥;임수진
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.175-180
    • /
    • 1998
  • This paper describes evaluation of oxidation stability for diesel engine oils by Hot-tube oxidation tester at high temperature. Evaluation was rated by visual inspection of lacquer in capillary glass tube and TAN determination of used oil. Air, NO$_2$-air and SO$_2$-air mixed gases were used as oxidizing gas. One oil which has low oxidation stability is selected and reformulated by addition of some additives such as antioxidant, detergent and disperant to improve oxidation stability. As a results of reformulation, antioxidant and detergent was effective for improvement of high temperture oxidation stability on diesel engine oil.

  • PDF

압전 트랜스포머형 액츄에이터를 사용한 고전압 계측 방법에 관한 연구 (A Study on the high voltage measurement method using piezoelectric transformer type-actuator)

  • 이용우;윤광희;류주현;윤현상;김성구;박창엽;정영호;하복남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.177-181
    • /
    • 1998
  • In this paper, we used the $BaTiO_3$ system ceramics with high temperature stability for high voltage devision, and rosen type-piezoelectric transformer for high voltage measurement. when Line-high voltage is 13,20O[V], Input voltage of piezoelectric transformer type-actuator is about 390CV1, and output voltage of it is 26.5FVI on the no-load. And also, temperature stability from >$-25^{\circ}C$ to >$50^{\circ}C$ is less than ${\pm}4.45%$

  • PDF

기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구 (Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying)

  • 김민수;이한성;안병민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.478-483
    • /
    • 2023
  • High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.