• Title/Summary/Keyword: high-temperature shift

Search Result 267, Processing Time 0.022 seconds

Reliability Characteristics of La-doped High-k/Metal Gate nMOSFETs

  • Kang, C.Y.;Choi, R.;Lee, B.H.;Jammy, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.166-173
    • /
    • 2009
  • The reliability of hafnium oxide gate dielectrics incorporating lanthanum (La) is investigated. nMOSFETs with metal/La-doped high-k dielectric stack show lower $V_{th}$ and $I_{gate}$, which is attributed to the dipole formation at the high-k/$SiO_2$ interface. The reliability results well correlate with the dipole model. Due to lower trapping efficiency, the La-doping of the high-k gate stacks can provide better PBTI immunity, as well as lower charge trapping compared to the control HfSiO stacks. While the devices with La show better immunity to positive bias temperature instability (PBTI) under normal operating conditions, the threshold voltage shift (${\Delta}V_{th}$) at high field PBTI is significant. The results of a transconductance shift (${\Delta}G_m$) that traps are easily generated during high field stress because the La weakens atomic bonding in the interface layer.

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature (HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화)

  • Gwon, J.U.;Kim, M.S.;Jang, T.H.;Bae, M.K.;Kim, S.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Measurement of Vibration Mode Shapes Using Time Average ESPI (시간 평균 ESPI를 이용한 진동 물체의 모우드 형태의 계측)

  • Kang, Young-June;Choi, Jang-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.84-93
    • /
    • 1996
  • Non-destructive inspection techniques using laser have been broading their application areas as well as growing their measurement skills together with the rapid development of circumferential technology like fiber optics, computer and image processing. The ESPI technique is already on the stage of on-line testing with commercial products in developed country nations. Especially, this technique is expected to be applied to the nuclear industry, automobile and aerospace because it is proper for the vibration measurement and it can be applied to objects of a high temperature. This paper describes the use of the ESPI system for measuring vibration patterns on the reflecting objects. Using this system, high-quality Jo fringes for identifying mode shapes are displayed. A bias vibration is introduced into the reference beam to shift the Jo fringes so that fringe shift algorithms can be used to determine vibration amplitude. Using this method, amplitude fields for vibrating objects were obtained directly from the time-average interferograms recorded by the ESPI system.

  • PDF

Die Shift Measurement of 300mm Large Diameter Wafer (300mm 대구경 웨이퍼의 다이 시프트 측정)

  • Lee, Jae-Hyang;Lee, Hye-Jin;Park, Sung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.708-714
    • /
    • 2016
  • In today's semiconductor industry, manufacturing technology is being developed for the purpose of processing large amounts of data and improving the speed of data processing. The packaging process in semiconductor manufacturing is utilized for the purpose of protecting the chips from the external environment and supplying electric power between the terminals. Nowadays, the WLP (Wafer-Level Packaging) process is mainly used in semiconductor manufacturing because of its high productivity. All of the silicon dies on the wafer are subjected to a high pressure and temperature during the molding process, so that die shift and warpage inevitably occur. This phenomenon deteriorates the positioning accuracy in the subsequent re-distribution layer (RDL) process. In this study, in order to minimize the die shift, a vision inspection system is developed to collect the die shift measurement data.

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity

  • Park, Chang-Sub;Joo, Kyung-Il;Kang, Shin-Won;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.

Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture (연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성)

  • Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.

4f spin dynamics in TbNi$_2$B$_2$C by $^{11}$B NMR

  • Lee, K.H.;Seo, S.W.;Kim, D.H.;Khang, K.H.;Seo, H.S.;Hwang, C.S.;Hong, K.S.;Cho, B.K.;Lee, W.C.;Lee, Moo-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.61-64
    • /
    • 2000
  • $^{11}$B NMR measurements have been performed to investigate local electronic structure and 4f spin dynamics for TbNi$_2$B$_2$C single crystal. $^{11}$B NMR spectra show three resonance peaks due to the quadrupolar interaction. Shift and linewidth are huge and strongly temperature-dependent. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. $^{11}$B NMR shift and relaxation rates show high anisotropy for field parallel and perpendicular to the c-axis. Anisotropy of the shift and the relaxation rates suggests that the hyperfine field perpendicular to the c-axis is larger.

  • PDF

A Study on the Dielectric Properties of Glass Fiber-Reinforced Plastic Composites (유리 섬유 강화 복합재료의 유전 특성에 관한 연구)

  • Lee, B.S.;Whang, M.W.;Kim, J.S.;Cho, G.S.;Yuk, J.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1615-1617
    • /
    • 1996
  • In this study, epoxidized bisphenolic resins laminated with glass fiber mat(GFRP) are ivestigated on surface, bulk aspect and dielectric constant(${\varepsilon}'$ and ${\varepsilon}''$) vs. frequency characteristics with temperature. The investigation shows the different characteristics accordig to the attachments of fiber surface, filler content, matrix properties, and the others. Especially, dielectric properties of this sample are highly increased above $100^{\circ}C$ and decreased with the rise of frequency. There is a resonance at the high frequency region ($1MHz{\sim}10MHz$). So, dielectric properties show the shift with frequency and temperature. Dielectric properties of EGL 10 are higher than those of EGL 40 with the frequency. Generally, dielectric properties of EGL 10 are more unstable than those of EGL 40 on the shift of frequency and temperature.

  • PDF

A Study on the Chemical Properties of AZO with Crystal Structure and IGZO of Amorphous Structure Due to the Annealing Temperature (결정질AZO 박막과 비정질IGZO 박막의 결정구조와 결합에너지와의 상관성)

  • So, Young Ho;Song, Jung Ho;Seo, Dong Myung;Oh, Teresa
    • Industry Promotion Research
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • To research the correlation between the amorphous and crystal structure of oxide semiconductors, AZO and IGZO films were deposited and annealed with various temperatures in a vacuum state. AZO increased the degree of crystal structure with increasing the annealing temperature, but IGZO became an amorphous structure after the annealing process at high temperature. The series of AZO films with various annealing temperatures showed the chemical shift from the analyzer of PL and O 1s spectra, but the results of IGZO films by PL and O 1s spectra were not observed the chemical shift. The binding energy of oxygen vacancy of AZO with a crystal structure was 531.5 eV, and that of IGZO with an amorphous structure was 530 eV as a lower binding energy.

A Comparison with CFD Simulation and Experiment for Steam-methane Reforming Reaction in Double pipe Continuous Reactor (이중관형 연속 반응기에서 수증기-메탄 개질반응의 실험 및 CFD 시뮬레이션)

  • Shin, Dong-Woo;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.226-236
    • /
    • 2013
  • The heat distribution and internal flow from the efficiency of actual reformer and specification variation, using the computer simulation and experiment about the steam methane reforming reaction which uses the high temperature reformer. Reaction model from steam refoemer uses the steam response model developed by Xu & Froment.As result we supposed the chemical react Steam Reforming(SR), Water Gas Shift(WGS), and Direct Steam Reforming(DSR) from the inner high temperature reformer dominates the response has dissimilar response. According to result of steam methane reforming reaction exam using high temperature reformer, we figured out when Steam Carbon Ratio(SCR) increase, number of hydrogen yield increases but methane decreases. When comparing and examining between design with one inlet and two inlet, result came out one inlet design is more outstanding at thermal distribution and internal flow, hydrogen yield in one inlet design than two inlet design.