• Title/Summary/Keyword: high-temperature semiconductor

Search Result 655, Processing Time 0.03 seconds

Experimental Study of Process Chiller for Semiconductor Temperature Control (반도체 공정 온도제어용 칠러의 실험적 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2011
  • Excessive heat may be generated during the semiconductor manufacturing process. Therefore, precise control of temperature is required to maintain a constant ambient temperature and wafer temperature in the chamber. Compared to an industrial chiller, a semiconductor chiller's power consumption is high because it is in continuous operation for a year. Because of this high power consumption, it is necessary to develop an energy-efficient chiller by optimizing the operation. The competitiveness of domestic products is low because of the high energy consumption. We experimentally investigated a domestic semiconductor by conducting load change, temperature rise and fall, and control precision experiments. The experimental study showed that the chiller had 2.1-3.9 kW of cooling capacity and 0.56-0.93 of EER. The control precisions were ${\pm}1^{\circ}C$ and ${\pm}0.6^{\circ}C$ when the setting temperatures were $0^{\circ}C$ and $30^{\circ}C$ respectively.

Temperature Control of a Test Plate for Semiconductor Using a Cooler and a Heater (Cooler와 Heater를 이용한 반도체 시험용 Plate의 온도제어)

  • 이호준;전창완;심용재;심운용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.320-320
    • /
    • 2000
  • In this paper, a temperature controller of a test plate for semiconductor is developed using LQG/LTR methodology. The liquid is heated or cooled in a tank by a heater of a cooler. The controller controls the flow of heated or cooled liquid in the plate by controling an electronic valve. The developed controller is applied to the plate designed for function test of a semiconductor under high or low temperature environment. As a result, control using the heater and the cooler together shows better control performance than using the heater or the cooler separately.

  • PDF

Estimation of Electrical Parameters of OD Organic Semiconductor Diode from Measured I-V Characteristics

  • Moiz, Syed Abdul;Ahmed, Mansoor M.;Karimov, Kh. S.
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.319-325
    • /
    • 2005
  • In this paper the effect of temperature on the electrical properties of organic semiconductor disperse orange dye 25 (OD) have been examined. Thin films of OD have been deposited on $In_{2}O_{3}$ substrates using a centrifugal machine. DC current-voltage (I-V) characteristics of the fabricated devices $(Al/OD/In_{2}O_{3)$ have been evaluated at varying temperatures ranging from 40 to $60^{\circ}C$. A rectification behavior in these devices has been observed such that the rectifying ratio increases as a function of temperature. I-V characteristics observed in $Al/OD/In_{2}O_{3)$ devices have been classified as low temperature $({\leq} 50^{\circ}C)$ and high temperature characteristics (approximately $60^{\circ}C$). Low temperature characteristics have been explained on the basis of the charge transport mechanism associated with free carriers available in OD, whereas high temperature characteristics have been explained on the basis of the trapped space-charge-limited current. Different electrical parameters such as traps factor, free carrier density, trapped carrier density, trap density of states, and effective mobility have been determined from the observed temperature dependent I-V characteristics. It has been shown that the traps factor, effective mobility, and free carrier density increase with increasing values of temperature, whilst no significant change has been observed in the trap density of states.

  • PDF

Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation (고온동작소자의 패키징을 위한 천이액상확산접합 기술)

  • Jung, Do-hyun;Roh, Myung-hwan;Lee, Jun-hyeong;Kim, Kyung-heum;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, research and application for a power module have been actively studied according to the increasing demand for the production of vehicles, smartphones and semiconductor devices. The power modules based on the transient liquid phase (TLP) technology for bonding of power semiconductor devices have been introduced in this paper. The TLP bonding has been widely used in semiconductor packaging industry due to inhibiting conventional Pb-base solder by the regulation of end of life vehicle (ELV) and restriction of hazardous substances (RoHS). In TLP bonding, the melting temperature of a joint layer becomes higher than bonding temperature and it is cost-effective technology than conventional Ag sintering process. In this paper, a variety of TLP bonding technologies and their characteristics for bonding of power module have been described.

Liquid Crystal Mixtures of High Response Time and High $T_{NI}$ for LCD-TV Application

  • Ban, Byeong-Seob;Kim, Bong-Hee;Seo, Bong-Sung;Yun, Yong-Kuk;Sakong, Dong-Sik;Chung, Kyu-Ha;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.498-499
    • /
    • 2002
  • In In order to develop liquid crystal mixtures of high response time and high nematic-isotropic transition temperature ($T_{NI}$) for LCD-TV application, novel liquid crystal molecules with a fluoro-isothiocyanate moiety were synthesized. They showed remarkably high $T_{NI}$ over 200 $^{\circ}C$, wide mesophase range of 170 $^{\circ}C$, high dielectric anisotropy of 14 and high optical anisotropy of 0.19. New LC Mixtures of the high $T_{NI}$ ($85{\sim}100 ^{\circ}C$) and fast response time ($8{\sim}10ms$) were blended with the novel fluoro-isothiocyanate containing LC molecules, phenylcyclohexanes, bicyclohexanes and ester compounds. It was also studied on optimum pitch of liquid crystal for high speed twisted nematic LCD-TV applicaton. The LC mixtures show a fast speed of the below one frame rate in real 17" TV panel.

  • PDF

Liquid Crystal Mixtures of High Response Time and High $T_{NI}$ for LCD-TV Application

  • Ban, Byeong-Seob;Kim, Bong-Hee;Seo, Bong-Sung;Yun, Yong-Kuk;Sakong, Dong-Sik;Chung, Kyu-Ha;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.413-414
    • /
    • 2002
  • In In order to develop liquid crystal mixtures of high response time and high nematic-isotropic transition temperature ($T_{NI}$) for LCD-TV application, novel liquid crystal molecules with a fluoroisothiocyanate moiety were synthesized. They showed remarkably high $T_{NI}$ over 200 $^{\circ}C$, wide mesophase range of 170 $^{\circ}C$, high dielectric anisotropy of 14 and high optical anisotropy of 0.19. New LC Mixtures of the high $T_{NI}$ (85${\sim}$100 $^{\circ}C$) and fast response time (8${\sim}$10ms) were blended with the novel fluoroisothiocyanate containing LC molecules, phenylcyclohexanes, bicyclohexanes and ester compounds. It was also studied on optimum pitch of liquid crystal for high speed twisted nematic LCD-TV applicaton. The LC mixtures show a fast speed of the below one frame rate in real 17" TV panel.

  • PDF

Trasient Liquid Phase bonding for Power Semiconductor (전력반도체 패키징을 위한 Transient liquid phase 접합 기술)

  • Roh, Myong-Hoon;Nishikawa, Hiroshi;Jung, Jae Pil;Kim, Wonjoong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, a demand in sustainable green technologies is requiring the lead free bonding for high power module packaging due to the environmental pollution. The Transient-liquid phase (TLP) bonding can be a good alternative to a high Pb-bearing soldering. Basically, TLP bonding is known as the combination of soldering and diffusion bonding. Since the low melting temperature material is fully consumed after TLP bonding, the remelting temperature of joint layer becomes higher than the operating temperature of the power module. Also, TLP bonding is cost-effective process than metal nanopaste bonding such as Ag. In this paper, various TLP bonding techniques for power semiconductor were described.

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

Spectroscopic Ellipsometry of Si/graded-$Si_{1-x}Ge_x$/Si Heterostructure Films Grown by Reduced Pressure Chemical Vapor Deposition

  • Seo, J.J.;Choi, S.S.;Yang, H.D.;Kim, J.Y.;Yang, J.W.;Han, T.H.;Cho, D.H.;Shim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.190-191
    • /
    • 2006
  • We have investigated optical properties of Si/graded-$Si_{1-x}Ge_x$/Si heterostructures grown by reduced pressure chemical vapor deposition. Compared to standard condition using Si(100) substrate and growth temperature of $650^{\circ}C$, Si(111) resulted in low growth rate and high Ge mole fraction. Also samples grown at higher temperatures exhibited increased growth rate and reduced Ge mole fraction. The features regarding both substrate temperature and crystal orientation, representing high incorporation of silicon supplied from gas stream played as a key parameter, illustrate that reaction control were prevailed in this process growth condition. Using secondary ion mass spectroscopy and spectroscopic ellipsometry, microscopic changes in atomic components could be analyzed for Si/graded-$Si_{1-x}Ge_x$/Si heterostructures.

  • PDF

Intelligent Diagnostic System of Photovoltaic Connection Module for Fire Prevention (화재 예방을 위한 태양광 접속반의 지능형 진단 시스템)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • To prevent accidents caused by changes in the surrounding environment or other factors, various protection facilities are installed at the photovoltaic connection module. The main causes of fire are sparks due to foreign substances inside the photovoltaic connection module through high temperature rise and dew condensation in the photovoltaic connection module, and fire due to heat from the power diode. The proposed method can predict the fire by measuring flame, carbon dioxide, carbon monoxide, temperature, humidity, input voltage, and current on the photovoltaic connection module, and when the fire conditions are reached, fire alarm and power off can be sent to managers and users in real time to prevent fire in advance.