• Title/Summary/Keyword: high-temperature oxidation

Search Result 1,139, Processing Time 0.023 seconds

High-Temperature Oxidation Behavior of Fe-22%Cr-5.8%Al Alloy (Fe-22%Cr-5.8%Al 합금의 고온 산화 거동)

  • Kim, Song-Yi;Choi, Sung-Hwan;Yun, Jung-Yeul;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • This study investigated the high temperature oxidation behavior of Fe-22%Cr-5.8%Al alloy and the oxidation kinetics of the alloy were discussed. Bulk samples were prepared by VAM (vacuum arc melting) and hot forging. High temperature oxidation testes were isothermally conducted up to 100 hours in 79%$N_2$+21%$O_2$ environment at three different temperatures ($900^{\circ}C$, $1000^{\circ}C$, $1100^{\circ}C$). The weight gain was measured after oxidation according to oxidation time (2, 4, 6, 8, 10, 15, 20, 25, 30, 60, 80, 100 hours). The weight gain significantly increased with increasing oxidation temperature. As the temperature increased, the oxidized samples showed sequential formation of $Al_2O_3$, Cr-rich oxide, Fe-rich oxide. The activation energy of high temperature oxidation was obtained as 306.63 KJ/mol. $Al_2O_3$ were developed on the surface in the early stage of oxidation, representing protective role of oxidation. However, Fe-based and Cr-based oxides leaded to breakaway of oxide layer, thus resulted in the significant increase of additional oxidation.

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

Effect of Grain Size on Corrosion Resistance and High Temperature Oxidation Behavior of 22Cr-15Ni-5W Super Austenitic Stainless Steels (22Cr-15Ni-5W 슈퍼 오스테나이트계(系) 스테인리스강(鋼)의 고온산화(高溫酸化) 및 내식성(耐蝕性)에 미치는 결정립(結晶粒) 크기의 영향(影響))

  • Kim, H.J.;Lee, H.W.;Lee, J.M.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.51-57
    • /
    • 2006
  • The effect of grain size on corrosion resistance and high temperature oxidation behavior was studied in 22Cr-15Ni-5W super austenitic stainless steels for desulfurization equipment as a heat power station. In the high temperature oxidation test, oxidation rate was increased as the temperature increased from $600^{\circ}C\;to\;800^{\circ}C$. In vapor, oxidation rate was faster than that in air. Because the vapor was inhibited nucleation of $Cr_2O_3$ film. And the high temperature oxidation resistance at $600^{\circ}C{\sim}800^{\circ}C$ was excellent from all specimens and specimen of the smallest grain size was the most excellent. Because increasing of diffusion course through the grain-boundary was promoted nucleation and growth of $Cr_2O_3$ film. In the test temperature at $600^{\circ}C{\sim}800^{\circ}C$, Cr rich round particle oxide was formed in air, whereas Fe rich needle type oxide was developed in vapor.

  • PDF

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.

High Temperature Oxidation Behavior of 316L Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion Process (Laser powder bed fusion 공정으로 제조된 오스테나이트계 316L 스테인레스 강의 고온 산화 거동)

  • Hwang, Yu-Jin;Wi, Dong-Yeol;Kim, Kyu-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.110-119
    • /
    • 2021
  • In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 ㎛ in size and grains grown along the building direction. Isotropic grains (~35 ㎛) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700℃ and 900℃, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700℃, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900℃, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100℃, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Fe-based oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the high-temperature oxidation characteristics and behavior are related.

Zricaloy-4 Oxidation Kinetics in High-Pressure High-Temperature Steam and Application to Accident Analysis (고압 고온 수증기에서 지르칼로이-4 산화반응 정량화 및 사고해석에의 응용)

  • 박광헌
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.6
    • /
    • pp.363-370
    • /
    • 2002
  • Empirical equations for the oxide thickness and the weight gain of Zircaloy-4 cladding during the oxidation in high temperature, high pressure steam have been developed. Firstly, the empirical equations for oxide thickness in 1 atm steam in 700~100$0^{\circ}C$ were made, then, the enhancement factor for the steam pressure effects on Zircaloy-4 cladding oxidation in high temperature steam was added. Based on the analysis of the weight fraction of dissolved oxygen in metal layer, empirical equations for the weight gain of Zircaloy-4 in high pressure, high temperature steam were developed. We compare the developed empirical equations with the Baker-Just correlation. The Baker-Just correlation can give a non-conservative estimation of oxidation of Zircaloy-4, depending on the steam pressure. These developed empirical equations can be used for the correct estimation of oxidation of Zircaloy-4 during accident analysis.

Hydrogen Effect on the Oxidation of Zr-Alloy Claddings under High Temperature (수소화물에 의한 Zr 합금의 고온산화 가속효과)

  • Jung, Yunmock;Ha, Sungwoo;Park, Kwangheon
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.4
    • /
    • pp.389-394
    • /
    • 2016
  • The operation method of nuclear power plants is currently changing to high burn-up and long period that can enhance economics and efficiency of the plant. Since nuclear plant operation environment has been becoming severe, the amount of absorbed hydrogen also has increased. Absorbed hydrogen can be fatal securing safety of nuclear fuel cladding in case of Loss of Coolant Accidents(LOCA). In order to examine the impact of hydride on high-temperature oxidation, high-temperature oxidation experiment was performed on normal Zry-4 cladding and on Zry-4 cladding where hydrogen is charged in air pressure steam atmosphere under the $950^{\circ}C$ and $1000^{\circ}C$. According to the results, while oxidation acceleration due to charged hydrogen was not observed prior to breakaway oxidation creation, oxidation began to accelerate in cladding where hydrogens charged as soon as the breakaway oxidation started. If so much hydrogen are charged in the cladding, equiaxial monoclinic phase to unstable of stress is formed and it is presumed that oxidation is accelerated because nearby stress caused a crack in equiaxial phase, and that makes corrosion resistance decline sharply.

Effects of Ti on High Temperature Oxidation of Ni-Based Superalloys (Ni 기지 초내열합금의 고온산화 저항성에 미치는 Ti의 영향)

  • Park, Si-Jun;Seo, Seong-Moon;Yoo, Young-Soo;Jeong, Hi-Won;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.129-134
    • /
    • 2016
  • The effects of Ti on the high temperature oxidation of Ni-based superalloys were investigated by cyclic oxidation at $850^{\circ}C$ and $1000^{\circ}C$. The oxide scale formed at $850^{\circ}C$ consists of $Cr_2O_3$, $Al_2O_3$, and $NiCr_2O_4$ layers, while a continuous $Al_2O_3$ layer was formed at $1000^{\circ}C$. The oxidation rate of the alloy with higher Ti content was higher than the alloy with less Ti content at $850^{\circ}C$, possibly due to the increase in the metal vacancy concentration in the $Cr_2O_3$ layer involved by incorporation of $Ti^{4+}$. However, Ti improved the oxidation resistance of the superalloy at $1000^{\circ}C$ by reducing oxygen vacancy concentration in $Al_2O_3$ layer.

Fabrication of ZrB2/SiC/WC composites via spark plasma sintering and enhancement of oxidation resistance

  • Jae-Seok Choi;Jung-Hun Kim;Jae Uk Hur;Sung-Churl Choi;Gye-Seok An
    • Journal of Ceramic Processing Research
    • /
    • v.21 no.3
    • /
    • pp.351-357
    • /
    • 2020
  • To prevent the oxidation of ultra-high-temperature ceramic zirconium diboride (ZrB2) at high temperatures, this study fabricated sintered composites containing silicon carbide and tungsten carbide, and examined the properties related to hightemperature oxidation. Spark plasma sintering was employed for rapid sintering, and a high-temperature torch test was conducted on samples to determine their surface oxidation behaviour. The composites oxidised at high temperature showed different surface oxidation behaviour according to the type of carbide-based additive. Composites containing both carbides, which have different oxidation mechanisms, exhibited better resistance to oxidation than those containing a single carbide.

High Temperature Oxidation Behavior and Surface Defect in Fe-25Mn-1.5Al-0.5C Steel (Fe-25Mn-1.5Al-0.5C강의 고온 산화 거동과 표면 결함)

  • Park, Shin Hwa;Hong, Soon Taik;Kim, Tai Wung;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.158-162
    • /
    • 2000
  • The high temperature oxidation behavior and the surface defect in Fe-25Mn-1.5A1-0.5C steel was investigated by XRD (X-ray Diffractin) and electron microscopy. The intra- and inter-granular oxides were formed by the selective oxidation of manganese and aluminum, which were identified to MnAl2O4 phase. Aluminum nitride (AlN) was formed in front of these oxides. The ${\gamma}$-matrix was transformed to ${\alpha}$- and ${\varepsilon}$- phases by the selective oxidation of manganese. The surface defect, micro-scab was induced by the difference of the high temperature ductility between the matrix and the inter-granular oxide.

  • PDF