• Title/Summary/Keyword: high-strength steel plate

Search Result 328, Processing Time 0.031 seconds

A Study on the Ultimate Strength of a Ship's Plate in used Arc-Length Method (호장증분법을 이용한 선체판의 최종강도에 관한 연구)

  • 고재용;박주신
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.496-503
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A Study on EGW Process of Thicker-Plate TMCP Steel (후판 TMCP 강재의 EGW 기법에 대한 연구)

  • Kim, Chan;Gu, Yeon-Baek;Kim, Gyeong-Ju;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.150-151
    • /
    • 2005
  • High capacity container carrier has been considered for many decades to transport the more containers at the same time. Therefore, it is required for high capacity container ship to be applied thicker plate to accomodate a mumber of containers compared to that of general container ship. To increase productivity of welding, new welding process should be considered. A representive process for increase of weld productivity is EGW(Electrode Gas Welding) process. Both sides EGW process was evaluated for thicker-plate TMCP Steel. From the test result, it is considered that this process can be applied, showing satisfaction of mechanical properties such as tensile strength and impact property.

  • PDF

A Study on the Deflection Mode of a Ship's Plate according to the Arc-Length Method (호장증분법에 의한 선체판의 처짐모드에 관한 연구)

  • 고재용;박주신;이돈출;박성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.732-737
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

Development of a Prestressed Plate Girder Forming Hybrid Sections of Hot-rolled H Beam and High-Strength Steel Plates (H형강과 고강도 강판으로 복합단면을 구성하는 프리스트레스트 플레이트거더의 개발)

  • Kyung, Yong Soo;Ahn, Byung Kuk;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.637-648
    • /
    • 2005
  • Innovative prestressed steel plate girders were presented in this study. Hot-rolled H beams were loaded first, then relatively high-strengthsteel plates were welded on the top and bottom flanges of preloaded H beams. Finally, high prestressed plate (HiPP) girder was manufactured by simply releasing prestresses of rolled beams. To verify prestress distributions induced in this girder, the experimental study was conducted and some guidelines to manufacture these girders effectively were addressed. In addition, methods to determine the allowable bending stress of HiPP girders and to check welding stresses were addressed for design of temporary bridges. The efficiency and effectiveness of the present girder were demonstrated through design examples of temporary bridges adapting the prestress-induced girder or the plate girder of the same section without prestresses. As a result, it has been found to be possible that the span length of HiPP girders for temporary bridges is longer than that of girders without prestresses.

Evaluation of Three Support Shapes on Behavior of New Bolted Connection BBCC in Modularized Prefabricated Steel Structures

  • Naserabad, Alifazl Azizi;Ghasemi, Mohammad Reza;Shabakhty, Naser;Arab, Hammed Ghohani
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1639-1653
    • /
    • 2018
  • Bolted connections are suitable due to high quality prefabrication in the factory and erection in the workplace. Prefabrication and modularization cause high speed of erection and fabrication, high quality and quick return of investment. Their technical hitches transportation can be removed by prefabrication of joints and small fabrication of components. Box-columns are suitable members for bolted structures such as welded steel structures with moment frames in two directions etc., but their continual fabrication in multi-story buildings and performing the internal continuity plate in them will cause some practical dilemmas. The details of the proposal technique introduced here, is to remove such problems from the box columns. Besides, some other advantages include new prefabricated bolted beam-to-column connections referred to BBCC. This connection is a set of plates joined to columns, beams, support, and bolts. For a better understanding of its fabrication and erection techniques, two connection and one structural maquettes are made. The present work aims to study the cyclic behavior of connection numerically. To verify the accuracy of model, a similar tested connection was modelled. Its verification was then made through comparison with test results. The behavior of connection was evaluated for an exterior connection using three different support shapes. The effects of support shapes on rigidity, ductility, rotation capacity, maximum strength, four rad rotation strength were compared to those of the AISC seismic provision requirements. It was found that single beams support has all the AISC seismic provision requirements for special moment frames with and without a continuity plate, and box with continuity plate is the best support in the BBCC connection.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet (평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석)

  • Ahn, Dae-Hwan;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

A Study on the Change of Load Carrying Capacity of High-tension Bolt Joints by Critical Sections (단면결손에 따른 고장력볼트 체결부의 내하력 변화에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Jang, Seok-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2402-2408
    • /
    • 2009
  • This study conducted a static tensile test in order to prevent the lowering of load carrying capacity caused by critical sections made by over bolt holes in the base plate and the cover plate of steel member joints using high-tension bolts. The change of the load carrying capacity of joints was examined by comparison of the maximum load on joint fracture obtained from the tensile test with critical section rate and design strength. According to the results, the rate of decrease in strength was higher when the critical section rate was high, and in particular, decrease in strength was affected much more by critical sections in the base plate than by those in the cover plate. In high-tension bolt joints using over bolt holes for the base plate and the cover plate, load carrying performance was somewhat lower than that in joints using standard bolt holes, but the maximum tensile strength on facture was over 15% higher than design fracture strength. According to the results of this study, the use of over bolt holes in high-tension bolt joints had an insignificant effect on the lowering of load carrying capacity, so the allowance of over bolt holes in the joints of steel members is expected to enhance to the economy and efficiency of the works.

Behavior of high-strength fiber reinforced concrete plates under in-plane and transverse loads

  • Ramadoss, P.;Nagamani, K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.371-382
    • /
    • 2009
  • The concrete plates are most widely used structural elements in the hulls of floating concrete structures such as concrete barges and pontoons, bridge decks, basement floors and liquid storage tanks. The study on the behavior of high-strength fiber reinforced concrete (HSFRC) plates was carried out to evaluate the performance of plates under in-plane and transverse loads. The plates were tested in simply supported along all the four edges and subjected to in-plane and traverse loads. In this experimental program, twenty four 150 mm diameter cylinders and twelve plate elements of size $600{\times}600{\times}30$ mm were prepared and tested. Water-to-cementitious materials ratios of 0.3 and 0.4 with 10% and 15% silica fume replacements were used in the concrete mixes. The fiber volume fractions, $V_f$ = 0%, 1% and 1.5% with an aspect ratio of 80 were used in this study. The HSFRC mixes had the concrete compressive strengths in the range of 52.5 to 70 MPa, flexural strengths ranging from 6.21 to 11.08 MPa and static modulus of elasticity ranging from 29.68 to 36.79 GPa. In this study, the behavior of HSFRC plate elements subjected to combined uniaxial in-plane and transverse loads was investigated.