• Title/Summary/Keyword: high-strength concrete filled steel square tube column

Search Result 19, Processing Time 0.022 seconds

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions- (고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.177-186
    • /
    • 1998
  • The concrete filled steel tubular column have to superior in compressive load carrying capacity, compared with same section typed hollow steel tube column, and have many excellent structural properties, such as stiffness improvement by filled concrete, improvement of ductility by reinforced effect of local buckling, and the like. However, it has not clear the effect of interaction between steel tube and filled concrete, stress portion ratio and fracture mechanism of concrete. This study investigated to structural properties for high strength concrete filled steel tube column by loading conditions through a series of experiments. Especially, this study investigated the properties of structural behaviors for concrete filled steel tube column stress ratio by loading conditions and failure mechanism of filled concrete.

  • PDF

Behavior of CFST columns with inner CFRP tubeunder biaxial eccentric loading

  • Li, Guochang;Yang, Zhijain;Lang, Yan;Fang, Chen
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1487-1505
    • /
    • 2016
  • This paper presents the results of an experimental study on the behavior of a new type of composite FRP-concrete-steel member subjected to bi-axial eccentric loading. This new type of composite member is in the form of concrete-filled square steel tube slender columns with inner CFRP (carbon fiber-reinforced polymer) circular tube, composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes. Tests on twenty-six specimens of high strength concrete-filled square steel tube columns with inner CFRP circular tube columns (HCFST-CFRP) were carried out. The parameters changed in the experiments include the slenderness ratio, eccentric ratio, concrete strength, steel ratio and CFRP ratio. The experimental results showed that the failure mode of HCFST-CFRP was similar to that of HCFST, and the specimens failed by local buckling because of the increase of lateral deflection. The steel tube and the CFRP worked together well before failure under bi-axial eccentric loading. Ductility of HCFST-CFRP was better than that of HCFST. The ultimate bearing capacity of test specimen was calculated with simplified formula, which agreed well with test results, and the simplified formula can be used to calculate the bearing capacity of HCFSTF within the parameters of this test.

An Evaluation for the Fire Resistance of Concrete-Filled Steel Square Tube Columns under Constant Axial Loads (일정 축력을 받는 콘크리트충전 각형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2007
  • The aim of this research is to evaluate the fire resistance of concrete-filled steel square tube columns (square CFT columns) under constant axial loads by numerical analysis. The authors examined the experimental results on the fire resistance of concrete-filled steel square tube columns without fire protection. As the materials of CFT columns, steel of SPSR 400 grade and concrete of 27.5MPa and 37.8MPa strengths were used. The significant parameters were determined, such as load ratio, cross-sectional dimensions, and concrete strength. Detailed analytical simulations of fire resistance and axial deformation showed good agreement with the experimental observations. Therefore, this numerical analysis exhibited a reasonable estimation of fire resistance of the square CFT column. Results of the numerical parametric studies showed that the fire resistance of the CFT columns increased with the decrease of the concrete strength and the increase of the cross-sectional dimensions about the constant axial load ratio ($N/N_c$).

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Evaluation on Deformation Capacity of CFT Square Columns subject to Constant Axial and Cyclic Lateral Loads (일정축력과 반복 수평력을 받는 콘크리트충전 각형강관 기둥의 변형성능 평가)

  • Ji, Ku Hyun;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.209-219
    • /
    • 2000
  • Concrete Filled steel Tube(CFT) Column has an excellent structural capacities in accordance with an interaction effect between the steel tube and concrete. Recently, CFT structure has been focussed on a structural system for a high-rise buildings. The purpose of this study is to evaluate a strength and deformation capacity of CFT square columns subjected to constant axial and cyclic lateral load. The test parameters are diameters to thickness ratio of steel tube, axial load ratios, concrete strengths, load applying types and whether or not filled concrete. Total sixteen specimens are fabricated to clarify the energy absorbtion capacity of CFT columns. Experimental results are summarized for maximum strength, initial stiffness and deformation capacity.

  • PDF

Experimental Evaluation of Fire Behavior of High-Strength CFT Column with Constant Axial Load (일정축력하에 고온을 받는 고강도 콘크리트 충전강관 기둥의 구조적 거동에 관한 연구)

  • Chung, Kyung Soo;Choi, In Rak;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • Fire-resistant (FR) test data for a square concrete-filled steel tube (CFT) columns consisting of high-strength steel (fy>650MPa) and high strength concrete (fck>100MPa) under axial loads are insufficient. The FR behavior of square high-strength CFT members was investigated experimentally for two specimens having ${\Box}-400{\times}400{\times}15{\times}3,000mm$ with two axial load cases (5,000kN and 2,500kN). The results show that the FR performance of the high-strength CFT was rapidly decreased at earlier time (much earlier at high axial load) than expected due to high strength concrete spalling and cracks. In addition, a fiber element analysis (FEA) model was proposed and used to simulate the fiber behaviour of the columns. For steel and concrete, the mechanical and thermal properties recommended in EN 1994-1-2 are adopted. Test results were compared to those of numerical analyses considering a combination of temperature and axial compression. The numerical model can reasonably predict the time-axial deformation relationship.

Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns

  • Dong, Jing;Ma, Hui;Zou, Changming;Liu, Yunhe;Huang, Chen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • This paper presents a finite element model which can simulate the axial compression behavior of steel reinforced recycled concrete (SRRC) filled square steel tube columns using the ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of material in the columns. The nonlinear analysis of failure modes, deformation characteristics, stress nephogram, and load-strain curves of columns under axial loads was performed in detail. Meanwhile, the influences of recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, width thickness ratio of square steel tube, RAC strength and slenderness ratio on the axial compression behavior of columns were also analyzed carefully. It shows that the results of finite element analysis are in good agreement with the experimental results, which verifies the validity of the analytical model. The axial bearing capacity of columns decreased with the increase of RCA replacement percentage. While the increase of wall thickness of square steel tube, profile steel ratio and RAC strength were all beneficial to improve the bearing capacity of columns. Additionally, the parameter analysis of finite element analysis on the columns was also carried out by using the above numerical model. In general, the SRRC filled square steel tube columns have high bearing capacity and good deformation ability. On the basis of the above analysis, a modified formula based on the American ANSI/AISC 360-10 was proposed to calculate the nominal axial bearing capacity of the columns under axial loads. The research conclusions can provide some references for the engineering application of this kind of columns.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.