• Title/Summary/Keyword: high-speed traction

Search Result 240, Processing Time 0.022 seconds

Permanent magnet gearless traction drive for German high speed train ICE 3

  • Binder A.;Koch Th.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.756-760
    • /
    • 2001
  • Two different designs of permanent magnet motors as direct wheel-set drive for the German high speed train ICE 3 are designed, one with surface mounted magnets (SM) and one with buried rotor magnets (BM). The surface magnet motor has $17\%$ less mass and a slightly higher efficiency and was therefore chosen for further investigations. Compared with the conventional drive system of the ICE 3, consisting of geared inverter fed induction machines, the gearless permanent magnet direct drive yields about $16\%$ lower losses. This calculation is based on the route parameters of the high speed track between Frankfurt/Main and Cologne in Germany, which is currently under construction.

  • PDF

A Study on the Development of Test Rig for High Speed Frontal Crash and Test of Members

  • Shin-You. Kang;In-Bae. Chang;Jang, Hye-Jeong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.21-27
    • /
    • 2002
  • In this paper, a simple test rig of high-speed crash for the front members of vehicles was developed for the improvement of crashworthiness of vehicle's side rail. The cart hanging the specimen is accelerated up to 35 mph by the traction wire and by the force of freely dropping weight and 1:3 accelerating pulleys. The cart with shock absorbers travels on the rail roads, so it does not transfer any additional vibration to the specimen. In order to measure the energy absorbed by the specimen when it collapse to the wall and during it deform, the two strain gage type load cells are used at the wall place. The test rig rated good to test the specimen like a side rail of vehicle as developing the vehicle's structures in the early design stage.

The question at issue of connector wire in High Speed Railway Catenary System of France (프랑스 고속철도 전차선로 시스템에서 균압선의 문제점)

  • 안영훈
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.636-651
    • /
    • 2000
  • In these days, SNCF replace the connector wire (M-T type) with a dropper has a equivalent role and function of the one in general lines of TGV, and change the connector wire (T-T-M-M-T-T, T-T-M-M-T type, etc) into a New one has more flexible cable in parallel lines (air section air joint, etc) of TGV. The Connector wire has many problems according to a flow of excessive circulation current (or traction current) and a sudden rise of temperature on catenary when electric locomotive is running in high speed. To solve the question at issue of the connector wire in high speed railway catenary system of Fiance, SNCF return their operating experience in TGV lines to design and execution of catenary system Therefore, we have to deal with the question in design and execution of catenary system for kyoungbu HSR line because we will spend a lot of time and more money for maintenance than for construction of that.

  • PDF

The design concept of the multi-coupled operation for high speed train (고속열차 중련운전 설계에 관한 연구)

  • Choi Kweon-hee;Chang Dae-sung;Jung Byung-ho;Lee Byung-seok;Kim Kuk-jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.877-882
    • /
    • 2005
  • The definition of multi-coupled operation is that coupled two trainsets is able to be operated one trainset identically. That is to say, the one driver, coupled two trainsets can operate the traction and braking system, control vehicle doors, phanto-graph, HVAC and passenger room lighting system etc, such as one trainset controlling. This study will provide high speed train design engineer with introducing multi-coupled operation system electrically and presentation automatic complex coupler mechanism, and then this paper will be applied to design next generation high speed train system such as Jun-la/Ho-nam line

Simulation-based Parametric Study of the Current Collection System of High Speed Trains (시뮬레이션에 의한 고속전철용 집전시스템 매개변수 연구)

  • 한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.279-285
    • /
    • 2003
  • In an electric traction system in which power is supplied from a catenary via a pantograph, the mechanical design of the catenary and pantograph is clearly of importance in relation to the problem of current collection at high speed. A computer-simulation technique is used to study the effects of changing parameters of pantograph and catenary on the quality of current collection at high speed. The current collection system is evaluated on the basis of the contact-force variations and displacement responses of the pantograph and contact wire. This study shows that current-collection quality is determined primarily by the overhead line parameters rather than by the pantograph. The results can be applied to optimize the design of current-collection systems.

Optimal Location and Design of RC-Bank on Korean Electric Railway System (한국 전기철도 시스템의 RC-Bank의 최적 위치 및 설계)

  • Lee Han-Min;Kim Gil-Dong;Oh Seh-Chan;Park Sung-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.754-764
    • /
    • 2005
  • This paper presents the RC-Bank installation by its optimal location and design to reduce harmonics on the Korean high-speed railway system. The system model of the Korean high-speed railway system is based on 8-port representation, which is an extension of 2-port network theory. A new proposed model is for harmonic analysis in $2\times27.5kV$ traction power supply system including feeders, contact lines, rails and autotransformers. The proposed model is developed by combining fundamental element models of the Korean high-speed railway system, and it is verified by comparing simulation results with measurement data regarding the amplification rate of harmonic currents.

  • PDF

Harmonic Iron Analysis of Traction Motor in the High Speed Train with the Distributed Tractions (동력분산형 고속 전철용 견인전동기의 고조파 철손 해석)

  • Seo, Jang-Ho;Lim, Jae-Won;Jung, Won;Jeon, Ho-Chang;Kim, Min-Suk;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.162-168
    • /
    • 2008
  • To predict efficiency of Interior Permanent Magnet Synchronous Motors(IPMSM) and to cope with the demagnetization risk of permanent magnets used in the IPMSM, accurate iron analysis of the IPMSM is very important at the motor design stage. In the analysis, we developed a new iron loss model of electrical machines for high-speed operation. The calculated iron loss was compared with the experimental data. It was clarified that the proposed method can estimate iron loss effectively at high-speed operation.

  • PDF

A study on Development of train performance analysis model for the high-speed electric multiple unit 400km/h experimental (차세대 고속열차 성능해석 모델 개발)

  • Lee, Tae-Hyung;Park, Choon-Soo;Kim, Young-Guk;Choi, Sung-Hoon;Kim, Sang-Soo;Han, In-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.524-528
    • /
    • 2008
  • The HEMU-400X(High-speed Electric Multiple Unit 400km/h eXperimental) project starts in 2007. It is required to analysis and simulate the train performance throughout the project life cycle for a successful completion of the project. This paper is devoted to the development of a train performance analysis model for the high-speed electric multiple unit 400km/h experimental. The model consist of running resistance model, train model, traction model and braking model. So, this paper represents the results of the train performance analysis.

  • PDF

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

A Study on the Design Procedure of the Eight Pole Magnetic Bearings for the Inner-rotor and the Outer-rotor Type

  • Lee, Jun-Ho;Park, Chan-Bae;Lee, Byung-Song;Lee, Su-Gil;Kim, Jae-Hee;Jung, Shin-Myung;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1424-1430
    • /
    • 2013
  • This paper presents design procedure of the magnetic bearings used for high-speed electric machines and flywheel energy storage systems. Magnetic bearing can be categorized by inner-rotor type and outer-rotor type according to the position of the rotary disc. These two types are applicable based on application environments such as application space, required attraction force, and controllability. Magnetic bearing is generally designed based on the ratio (geometrical coefficient or geometrical efficiency) of pole width to rotor journal radius but proper ratio is only decided by the analysis. This is the difficulty of the magnetic bearing design. In this paper, proper design technology of the inner-rotor type and outer-rotor-type eight pole magnetic bearings is introduced and compared with the FEM analysis results, which verifies the proposed design procedure is suitable to be applied to the design of the magnetic bearings for the industrial applications and flywheel energy storage system.