• Title/Summary/Keyword: high-speed signaling

Search Result 111, Processing Time 0.03 seconds

Study on the mutual interference of mixed mode operation between KTX and AREX train at the airport linked line (공항철도연계 구간의 고속열차(KTX)와 전동열차(AREX) 혼용운용에 따른 ATP지상설비간 상호간섭 영향에 관한 연구)

  • Kim, Su-Bong;Song, In-Kuen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.23-30
    • /
    • 2016
  • ccording to the airport railroad linkage facility expansion project constructing a connecting line to the airport railway and improving the signal system and Gyeongui Susaek Station, a high-speed train is able to run directly from Gyeongbu and Honam to the airport railway. According to mixed operation of high-speed Korea Train Express (KTX) and Airport Railroad Express (AREX) trains, to establish ERTMS/ETCS L1 ATP to operate the KTX train, the signaling system of the AREX train is the same as the existing ATC/ATO, but its operation became impossible because the high-speed train causes mutual interference between the "high-speed train (KTX) and AREX ground signaling equipment" and between the "AREX train and KTX (high-speed train) ATP ground equipment." Thus, it was necessary to have a supplemental technical interference analysis comparing the characteristics of the AREX beacon and the KTX balise. So, we resolve the problems of mutual interference between the "high-speed train (KTX) and AREX ground signaling equipment" and between the "AREX train and KTX (high-speed train) ATP ground equipment" with a test using an actual train, and we confirm the technical validity with three types of test module.

A New Via Structure for Differential Signaling (차동 신호용 비아 구조)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • A new via structure on printed circuit board has been proposed for differential signaling in applications of high-speed interconnection. In new structure, the via is physically separated and then divided into two electrically-isolated sections using mechanical drill routing process. These cutted vias are connected respectively to the traces of the differential pair. New via structure makes possible to rout the differential pair using only one via, while conventional via structure needs two vias for interconnection. Because the spacing even in via region keeps almost constant, new via structure can alleviate an impedance discontinuity and then enhance its signal transmission characteristics such as reflection loss and insertion loss. It is expected that new via structure is effective in differential signaling for high-speed interconnection.

Simulator Design for Interface and Functions verification of Railway Signaling Systems (신호제어시스템 기능 및 인터페이스 확인을 위한 시뮬레이터 설계)

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Joung, Eui-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1420-1422
    • /
    • 2000
  • The railway signaling system consists of micro-computerized vital devices on board and ground, which are connected to one another by track circuits, and interlocking equipment for route control. Therefore it is important to validate the required functions of developed system and interface between developed signaling systems. To verify the conditions and functions of signaling functions, the laboratory prototype test bench, which consists of personal computers LAN, will be developed. In this paper design of signaling system test-bench for high-speed signaling is described and developed software module are presented.

  • PDF

Design of High-Speed Multi-Layer PCB for Ultra High Definition Video Signals (UHD급 영상구현을 위한 다층인쇄회로기판의 특성 임피던스 분석에 관한 연구)

  • Jin, Jong-Ho;Son, Hui-Bae;Rhee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1639-1645
    • /
    • 2015
  • In UHD high-speed video transmission system, when a signal within certain frequency region coincides electrically and structurally, the system becomes unstable because the energy is concentrated, and signal flux is interfered and distorted. For the instability, power integrity analysis should be conducted. To remove the signal distortion for MLB, using a high-frequency design technique for EMI phenomenon, EMI which radiates electromagnetic energy fluxed into power layer was analyzed considering system stabilization. In this paper, we proposed an adaptive MLB design method which minimizes high-frequency noise in MLB structure, enhances signal integrity and power integrity, and suppresses EMI. The characteristic impedance for multi-layer circuit board proposed in this study were High-Speed Video Differential Signaling(HSVDS) line width w = 0.203, line gap d = 0.203, beta layer height h = 0.145, line thickness t = 0.0175, dielectric constant εr = 4.3, and characteristic impedance Zdiff = 100.186Ω. When high-speed video differential signal interface board was tested with optimized parameters, the magnitude of Eye diagram output was 672mV, jittering was 6.593ps, transmission frequency was 1.322GHz, signal to noise was 29.62dB showing transmission quality improvement of 10dB compared to previous system.

A Study on The Design of High Speed-Low Voltage LVDS Driver Circuit with Novel ESD Protection Device (새로운 구조의 ESD 보호소자를 내장한 고속-저 전압 LVDS 드라이버 설계에 관한 연구)

  • Kim, Kui-Dong;Kwon, Jong-Ki;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.141-148
    • /
    • 2006
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD (Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low signal swing range, maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps. And Zener Triggered SCR devices to protect the ESD Phenomenon were designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 5.8V. Finally, The high speed I/O interface circuit with the low triggered ESD protection device in one-chip was designed.

  • PDF

Twisted Differential Line Structure on High-Speed Printed Circuit Boards to Enhance Immunity to Crosstalk and External Noise

  • Kam, Dong-Gun;Kim, Joung-Ho
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Differential signaling has become a popular choice for high-speed interconnection schemes on Printed Circuit Boards (PCBs), offering superior immunity to external noise. However, conventional differential transmission lines on PCBs have problems, such as crosstalk and radiated emission. To overcome these, we propose a Twisted Differential Line (TDL) structure on a multi-layer PCB. Its improved immunity to crosstalk noise and the reduced radiated emission has been successfully demonstrated by measurement. The proposed structure is proven to transmit 3 Gbps digital signals with a clear eye-pattern. Furthermore, it is subject to much less crosstalk noise and achieves a 13 dB suppression of radiated emission. Index Terms - Twisted Differential Line, Differential Signaling, Crosstalk, Radiated Emission, Transmission Line, Twisted Pair

Design and Construction of Integrated Signalling System for Next-generation High-Speed Train (한국형 고속전철용 통합 신호시스템의 설계 및 구축)

  • 황종규;이종우;조용기;류호중
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.467-472
    • /
    • 2002
  • The railway signal ing system consists of several vital computerized equipments. Now the project for development of signal ing system for the next-general ion high-speed train is progressed according to the consortium. The developing signal ing system by this project, kTCS(Korean Train Control System), is composed of kTCS-CTC, kTCS-IXL, kTCS-ATC and etc. The KTCS signaling has to be operated as a integrated system by interface between each signaling. To achieve these, communicat ion protocols between each signal ing have to be designed and message codes are defined. In this paper the configuration of integrated kTCS system and designed communication protocol is presented.

  • PDF

HSRC-OQPSK Transceiver Architectures for High-Speed Data Communications using Differential Coding for 4-Phase Ambiguity (고속 데이터 통신을 위한 HSRC-OQPSK 4위상 모호 해결 차동 코딩 송수신기 구조)

  • Yeo, Hyeop-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.705-708
    • /
    • 2010
  • Recently, HSRC (Half-Symbol-Rate-Carrier) OQPSK (Offset Quadrature Phase Shift Keying) signaling which reduces the bandwidth of transmitted signal for high-speed data communications has been introduced. Since the signal is based on QPSK modulation, it also has the characteristics of QPSK signal. This paper introduces architectures of the transceiver using differential coding to resolve the 4-phase ambiguity problem of the HSRC-QOPSK signaling for high-speed data communications. In addition, this paper proves the functionality of the transceiver with differential coding and shows the BER (bit-error-rate) performance of the transceiver by simulations.

  • PDF

A Study of Systematization for Train Control Technique (열차제어기술 체계화 방안에 대한 연구)

  • Lee, Jae-Ho;Shin, Duc-Ko;Lee, Kang-Mi
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.2010-2016
    • /
    • 2009
  • Before introducing high speed train, train signal system was operated passively depending on a driver by signal lamp display. Now it is changing to onboard signaling system because of train speed increased(conventional track is 230km/h, high speed track is 380km/h), high speed. low speed freight train operation mixed, operation for high speed train in conventional track and dense operation. ie. ETCS(European Train Control System) Level 1 is introducing. Also, in case of high speed train, the train control system of France was introduced and has operated from 2004, now we have a difficulty for rising speed more than 300km/h because of commercial operation speed limited as 300km/h. Therefore, it need to establish the train control technique according to trackside surroundings and develope standard system like European ERTMS/ETCS, China CTCS(Chinese Train Control System), Japan D-ATC(Digital Automatic Train Control). In this paper, we derive the systematization method for Korea train technique by network-oriented, information-oriented, intelligence-oriented and combination-oriented corresponding train development direction. Proposed method has a merit to prevent cross by mixed operation with existing system and improvement after validity demonstration and system development and supply train system to meet user requirement in exporting.

  • PDF

A Comparative Analysis on the Operating System of Urban Railway & Conventional·High speed Railway (도시철도와 일반·고속철도의 운영방식에 관한 비교 분석)

  • Choi, Jong-Gil;Yun, Hak-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.953-958
    • /
    • 2015
  • Generally, Urban railway have special characteristics with short distance journey and minimum headway intercity transportation. These days, urban railway operators choose the driverless operation system without driver. On the contrary, Conventional & high speed railway utilize for long distance and high speed running. Because of special conditions of freight railway operation compared with urban railway, operation of conventional & high speed railway is showed very different characteristics. In this paper, We compares different operation scheme of urban railway and conventional & high speed railway and then present condition for train control system based on radio.