• 제목/요약/키워드: high-speed press. high speed press machine. Material

검색결과 9건 처리시간 0.023초

대형 고속프레스 플런저 구조와 동적 하사점 변위량에 대한 연구 (A study on the Large High Speed Press Plunger Structure and Dynamic Bottom Dead Center Displacement)

  • 김승수;윤재웅
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.40-45
    • /
    • 2022
  • The EV electric vehicle market is growing rapidly worldwide. An electric vehicle means a vehicle that uses energy charged through an electricity source as power. The precision of the press is important to mass-produce the drive motor, which is a key component of the electric vehicle. The size of the driving motor is increasing, and The size of the mold is also growing. In this study, the precision of large high-speed presses for mass production of driving motors was measured. A study was conducted on the measurement method of press and the analysis of measurement data. A drive motor is a component that transmits power by converting electrical energy into kinetic energy. EV driven motors have key material properties to improve efficiency. The material properties are the thickness of the material. As a method for improving performance, use a 0.2mm thin steel sheet. Mold is also becoming larger. As the mold grows, the size of the high-speed press for mass production of the driving motor is also increasing. Also, the precision of the press is the most important because it uses a thin iron plate material. So the importance of large press precision is being emphasized. In this study, the effect of large high-speed press structure on precision was verified

High Speed Press 하사점 변화에 따른 엠보싱 높이 변화 연구 (A study on the embossing Height displacement of high speed press bottom point accordance)

  • 김승수;김세환;이춘규
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.29-33
    • /
    • 2016
  • Production machines have been more important, due to quality level of vehicle motor core is getting higher. That is why, to improve assembly fit of tooling and to be emphasized how much moving down caused of deterioration of high speed press, it is also getting more important parts as solution of problems. To analyze how much move based on condition of movement as tooling and high speed press, and to measure how much impact to embossing height caused of changing movement down. As the result of investigation, in case of material thickness 0.5mm, there is highest pull and force power when emboss height is 0.45mm. If emboss height is less than 0.45mm, pull and force power is getting lower, if emboss height is higher than 0.45mm, it is impossible to make it forming caused of changed press movement, also it has been piercing.

성형충격 저감을 위한 프레스 구동기구에 관한 연구 (Study on the moving device of press machine for forming impact reduction)

  • 김정언;홍석관;김종덕;허영무;조종두;강정진
    • Design & Manufacturing
    • /
    • 제2권4호
    • /
    • pp.11-15
    • /
    • 2008
  • In the sheet metal forming using a high speed press machine, driving device, such as crank, link, and knuckle mechanism, has to be designed in consideration of impact at a moment when press die contact with material, because the impact affects a dimensional accuracy of products and a life span of press die. In this study, dynamic analysis was performed using numerical simulation in order to verify the impact reduction effect for proposed double knuckle mechanism by estimating rolling and pitching moment of slide.

  • PDF

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming

  • Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.651-658
    • /
    • 2017
  • High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.

Study for improvement of grounds subjected to cyclic loads

  • Mittal, Satyendra;Meyase, Kenisevi
    • Geomechanics and Engineering
    • /
    • 제4권3호
    • /
    • pp.191-208
    • /
    • 2012
  • Due to rapid industrialisation, large scale infrastructure development is taking place worldwide. This includes railways, high speed highways, elevated roads etc. To meet the demands of society and industry, many innovative techniques and materials are being developed. In developed nations like USA, Japan etc. for railways applications, new material like geocells, geogrids are being used successfully to enable fast movement of vehicles. The present research work was aimed to develop design methodologies for improvement of grounds subjected to cyclic loads caused by moving vehicles on roads, rail tracks etc. Deformation behavior of ballast under static and cyclic load tests was studied based on square footing test. The paper presents a study of the effect of geo-synthetic reinforcement on the (cumulative) plastic settlement, of point loaded square footing on a thick layer of granular base overlying different compressible bases. The research findings showed that inclusion of geo-synthetics significantly improves the performance of ballasted tracks and reduces the foundation area. If the area is kept same, higher speed trains can be allowed to pass through the same track with insertion of geosynthetics. Similarly, area of machine foundation may also be reduced where geosynthetics is provided in foundation. The model tests results have been validated by numerical modeling, using $FLAC^{3D}$.

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • 제11권3호
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구 (A study on the shear bond strengths of veneering ceramics to the colored zirconia core)

  • 강선녀;조욱;전영찬;정창모;윤미정
    • 대한치과보철학회지
    • /
    • 제47권3호
    • /
    • pp.312-319
    • /
    • 2009
  • 연구목적: 지르코니아-도재 수복물에 있어 상부도재와 코어 사이의 결합 실패가 종종 보고되어 왔으며 특히 착색지르코니아 코어는 기존의 백색 지르코니아보다 상부 도재와의 결합력이 약하다고 보고된 바 있다. 이 연구의 목적은 착색 지르코니아 코어 위의 상부도재를 적층식과 열가압식으로 제작하여 그 전단결합강도를 알아보고, 이를 전통적인 금속-도재간 결합강도와 비교하여 그 임상적 안정성을 평가하는 것이다. 연구 재료 및 방법: 금속도재군 (MC)을 대조군으로 하였다. 전통적인 금속도재군 (MC)과 지르코니아 코어를 사용한 두가지 군 (ZB, ZP)에 대하여 각 시스템별로 10개씩, 총 30개의 시편을 제작했다. CAD/CAM을 이용해 직경 12 mm, 높이 2.8 mm의 원판형 지르코니아 코어 (Katana zirconia)를 제작하고, 그 상부에 직경 2.8 mm, 높이 3 mm의 도재를 축성했다. ZB군은 CZR을 이용하여 적층법으로 상부도재를 제작했으며 ZP군은 NobelRondo Press ingot를 열가압하여 제작했다. Shear bond test machine (R&B Inc. Daejeon, Korea)을 이용하여 분당 0.50 mm의 속도로 파절이 일어날 때까지 전단력을 가하여 최대적용력 (N)을 측정하여 전단결합강도를 계산하고, 일원배치 분산분석을 사용하여 유의수준 5%에서 검정하였다. 파절양상을 알아보기 위하여 전자주사현미경을 통해 파절단면을 관찰했다. 결과: 평균 전단강도 (SD)는 MC 대조군 29.14 (2.26); ZB 29.48 (2.30); ZP 29.51 (2.32) 이었다. 실험군과 대조군 사이에 유의한 차이는 없었다. 모든 실험군에서 접착성 실패와 응집성 실패가 혼재된 양상을 보였으며, 응집성 실패가 우세했다. 결론: 1. 착색지르코니아 코어와 상부도재들 간의 전단결합강도는 금속 도재간 전단결합강도와 유의한 차이가 없었다. 2. 착색지르코니아 코어의 상부도재를 제작하는 방식에 있어 적층법과 열가압법 간의 전단결합강도에 유의한 차이는 없었다 (P > .05). 3. 파절양상은 응집성 파절이 우세한 가운데 접착성 파절과 응집성 파절이 혼재되어 나타났다.