• Title/Summary/Keyword: high-speed motion control

Search Result 265, Processing Time 0.031 seconds

A Motion-Control Chip to Generate Velocity Profiles of Desired Characteristics

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.563-568
    • /
    • 2005
  • A motion-control chip contains major functions that are necessary to control the position of each motor, such as generating velocity command profiles, reading motor positions, producing control signals, driving several types of servo amplifiers, and interfacing host processors. Existing motion-control chips can only generate velocity profiles of fixed characteristics, typically linear and s-shape smooth symmetric curves. But velocity profiles of these two characteristics are not optimal for all tasks in industrial robots and automation systems. Velocity profiles of other characteristics are preferred for some tasks. This paper proposes a motion-control chip to generate velocity profiles of desired acceleration and deceleration characteristics. The proposed motion-control chip is implemented with a field-programmable gate array by using the Very High-Speed Integrated Circuit Hardware Description Language and Handel-C. Experiments using velocity profiles of four different characteristics will be performed.

  • PDF

Design and Extraction of Control Parameters of a Moving-Coil-Type Linear Actuator for Driving of Linear Reciprocating Motion Control Systems (리니어 왕복운동 제어시스템 구동용 가동코일형 리니어 액츄에이터의 설계제작 및 제어정수 도출)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Park, Hui-Chang;Mun, Seok-Jun;Park, Chan-Il;Jeong, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.241-248
    • /
    • 1999
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loudspeakers to stirling engine driven linear reciprocating alternators, compressors, textile machines etc. The stroke-length may go up to 2m, and the maximum speed is in the range of 5 to 10m/s with oscillating frequency as high as 15 kHz. Therefore, the linear oscillating actuators(LOAs) may be considered as variable speed drivers of precise controller with stoke-length and reversal periods during the reciprocating motion. In this paper, the design, fabrication, experiments, and extraction of control parameters of a moving coil type LOA for driving of linear reciprocating motion control systems, are treated. The actuator consists of the NdFeB permanent magnets with high specific energy as the stator produced magnetic field, a coil-wrapped nonmagnetic hollow rectangular bobbin structure, and an iron core as a pathway for magnetic flux. Actually, the design is accomplished by using FEM analysis for the basic configuration of a magnetic circuit, and characteristic equations for coil design. In order to apply as the drivers of a linear motion reciprocating control system, the control parameters and circuit parameters, such as input voltage-stoke, exciting frequency-stoke, coil inductance and so on, are extracted from the analysis and experiments on concerning a fabricating LOA.

  • PDF

고속 디지탈 퍼지 추론회로 개발과 산업용 프로그래머블 콘트롤러에의 응용

  • 최성국;김영준;박희재;고덕용;김재옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.354-358
    • /
    • 1992
  • This paper describes a development of high speed fuzzy inference circuit for the industrialprocesses. The hardware fuzzy inference circuit is developed utilizing a hardware fuzzy inference circuit is developed utilizing a DSP and a multiplier and accumulator chip. To enhance the inference speed, the pipeline disign is adopted at the bottleneck and the general Max-Min inference method is slightly modified as Max-max method. As a results, the inference speed is evaluated to be 100 KFLIPS. Owing to this high speed feature, satisfactory application can be attained for complex high speed motion control as well as the control of multi-input multi-output nonlinear system. As an application, the developed fuzzy inference circuit is embedded to a PLC (Porgrammable Logic Controller) for industrial process control. For the fuzzy PLC system, to fascilitate the design of the fuzzy control knowledge such as membership functions, rules, etc., a MS-Windows based GUI (Graphical User Interface) software is developed.

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

Design St Implementation of a High-Speed Navigation Computer for Strapdown INS (스트랩다운 관성항법시스템 고속 항법컴퓨터 설계와 구현)

  • 김광진;최창수;이태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.29-29
    • /
    • 2000
  • This paper describes the design and implementation of a high-speed navigation computer to achieve precision navigation performance with Strapdown INS. The navigation computer inputs are velocity and angular increment data from the ISA at the signal of the 2404Hz interrupt and performs the removal of gyro block motion and the compensation of high dynamic errors at the 200Hz. For high-speed and high-accuracy, the computer consists of the 68040 micro-processor, 128k Memories, FPGAs, and so on. We show that the computer satisfies the required performance by In-Run navigation tests.

  • PDF

A Speed Sensorless SPMSM Position Control System with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 SPMSM의 속도 제어 시스템)

  • Kim, Min-Ho;Kim, Nam-Hun;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.277-280
    • /
    • 2001
  • This paper presents a speed sensorless implementation of digital speed control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) drives with a direct torque control(DTC). The system presented are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed speed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

Introduction to Autonomous Vehicle PHAROS (자율주행자동차 PHAROS)

  • Ryu, Jee-Hwan;Park, Jang-Sik;Ogay, Dmitriy;Bulavintsev, Segey;Kim, Hyuk;Song, Young-wook;Yoon, Moon-Young;Kim, Jea-Seok;Kang, Jeon-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.787-793
    • /
    • 2012
  • This paper introduces the autonomous vehicle Pharos, which participated in the 2010 Autonomous Vehicle Competition organized by Hyundai-Kia motors. PHAROS was developed for high-speed on/off-road unmanned driving avoiding diverse patterns of obstacles. For the high speed traveling up to 60 km/h, long range terrain perception, real-time path planning and high speed vehicle motion control algorithms are developed. This paper describes the major hardware and software components of our vehicle.

Robust servo control of high speed optical disk drives (고속 광 디스크 드라이브의 강인 서보제어)

  • 임승철;정태영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.438-444
    • /
    • 1997
  • Recently, optical disk drives are increasingly demanded to have higher speed as well as high information density, especially for applications like CD-ROM drives. To this end, improvement of their optical pick-up structure and control is recognized the very challenging issue. In this paper, the 2-D motion of the pick-up is first analytically modelled to identify the cause and effect of the troublesome cross coupling between auto-focusing and tracking directions. Subsequently, the overall system equations are derived to include the dynamics of the related components in the auto-focusing servo system. While its unmeasurable parameters being estimated by the least square error method, a simple but decent linear model can be obtained within its operating frequency range. To design the high speed and robust positional servo controller, the design specifications are detailed and H$\sub$.inf./ control method is employed based on the simple model. Using the pickup in a commercial 8 fold speed CD-ROM drive as an example, performance of the designed controller is verified by realtime experiments.

  • PDF