• Title/Summary/Keyword: high-speed motion control

Search Result 265, Processing Time 0.042 seconds

Real-time Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 보상)

  • 배은덕;오정석;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement.

A Study on the Sliding Mode Control of PMLSM using the Slate Observer (상태관측기에 의한 영구자석 선형동기전동기의 슬라이딩모드제어에 관한 연구)

  • 황영민;신동률;최거승;조윤현;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, these fast dynamic response is of prime importance. In particular, since the PMLSM(Permanent Magnet Linear Synchronous Motor) has characteristics of high speed, high thrust, it has been used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, a study of the sliding mode with VSS (Variable Structure System) design for a PMLSM is presented. For fast and precise motion control of PMLSM, the compensation of disturbance and parameter variation is necessary. Hence we eliminate the reaching phase use of VSS that is changed to switching function and vector control using the state observer. And we proposed to sliding mode control algorithm so that realize fast response without overshoot, disturbance and parameter variation.

Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT

  • Chaudhari, R.E.;Dhok, S.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.519-528
    • /
    • 2016
  • In order to achieve fast computational speed with good visual quality of output video, we propose a frequency domain based new fractal video compression scheme. Normalized cross correlation is used to find the structural self similar domain block for the input range block. To increase the searching speed, cross correlation is implemented in the frequency domain using FFT with one computational operation for all the domain blocks instead of individual block wise calculations. The encoding time is further minimized by applying rotation and reflection DFT properties to the IFFT of zero padded range blocks. The energy of overlap small size domain blocks is pre-computed for the entire reference frame and retaining the energies of the overlapped search window portion of previous adjacent block. Quadtree decompositions are obtained by using domain block motion compensated prediction error as a threshold to control the further partitions of the block. It provides a better level of adaption to the scene contents than fixed block size approach. The result shows that, on average, the proposed method can raise the encoding speed by 48.8 % and 90 % higher than NHEXS and CPM/NCIM algorithms respectively. The compression ratio and PSNR of the proposed method is increased by 15.41 and 0.89 dB higher than that of NHEXS on average. For low bit rate videos, the proposed algorithm achieve the high compression ratio above 120 with more than 31 dB PSNR.

A Multi-Axis Contour Error Controller for High-Speed/High-Precision Machining of Free form Curves (고속 고정밀의 자유곡선 가공을 위한 다축 윤곽오차 제어)

  • 이명훈;최정희;이영문;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • The growing need for higher precision and productivity in manufacturing industry has lead to an increased interest in computer numerical control (CNC) systems. It is well known fact that the cross-coupling controller (CCC) is an effective method for contouring applications. In this paper, a multi-axis contour error controller (CEC) based on a contour error vector using parametric curve interpolator is introduced. The contour error vector is a vector from the actual tool position to the nearest point on the desired path. The contour error vector is the closest error model to the contour error. The simulation results show that the CEC is more accurate than the conventional CCC for a biaxial motion system. In addition, the experimental results on 3-axis motion system show that the CEC is simply applied to 3-axis motions and contouring accuracy is significantly improved.

Miniaturization of Signal Processor of Airborne Tracking Radar (항공용 추적 레이더의 신호처리기 소형화 설계)

  • Kim, Doh-Hyun;Lee, Young-Sung;Lee, Hyung-Woo;Kim, Soo-Hong;Kim, Young-Chae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.114-117
    • /
    • 2002
  • The airborne tracking radar is located in front of aircraft or missile and measures and tracks a target motion. The signal processor receives target signals from a receiver using A/D converters, and calculates the target motion, and transfers the data to the aircraft or missile control unit. Since the signal processing system is required to be lightweight and small size as well as high performance to calculate and analyze the received signal, we use high speed DSPs and SMD type components having low power consumption. In this paper, we describe the design concept of signal processing system of the airborne tracking radar.

  • PDF

Design of a CMAC Controller for Hydro-forming Process (CMAC 제어기법을 이용한 하이드로 포밍 공정의 압력 제어기 설계)

  • Lee, Woo-Ho;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.329-337
    • /
    • 2000
  • This study describes a pressure tracking control of hydroforming process which is used for precision forming of sheet metals. The hydroforming operation is performed in the high-pressure chamber strictly controlled by pressure control valve and by the upward motion of a punch moving at a constant speed, The pressure tracking control is very difficult to design and often does not guarantee satisfactory performances be-cause of the punch motion and the nonlinearities and uncertainties of the hydraulic components. To account for these nonlinearities and uncertainties of the process and iterative learning controller is proposed using Cerebellar Model Arithmetic Computer (CMAC). The experimental results show that the proposed learning control is superior to any fixed gain controller in the sense that it enables the system to do the same work more effectively as the number of operation increases. In addition reardless of the uncertainties and nonlinearities of the form-ing process dynamics it can be effectively applied with little a priori knowledge abuot the process.

  • PDF

Design and Control of Wire-driven Flexible Robot Following Human Arm Gestures (팔 동작 움직임을 모사하는 와이어 구동 유연 로봇의 설계 및 제어)

  • Kim, Sanghyun;Kim, Minhyo;Kang, Junki;Son, SeungJe;Kim, Dong Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.50-57
    • /
    • 2019
  • This work presents a design and control method for a flexible robot arm operated by a wire drive that follows human gestures. When moving the robot arm to a desired position, the necessary wire moving length is calculated and the motors are rotated accordingly to the length. A robotic arm is composed of a total of two module-formed mechanism similar to real human motion. Two wires are used as a closed loop in one module, and universal joints are attached to each disk to create up, down, left, and right movements. In order to control the motor, the anti-windup PID was applied to limit the sudden change usually caused by accumulated error in the integral control term. In addition, master/slave communication protocol and operation program for linking 6 motors to MYO sensor and IMU sensor output were developed at the same time. This makes it possible to receive the image information of the camera attached to the robot arm and simultaneously send the control command to the robot at high speed.

Digital Contouring Control of Biaxial System (2축 디지틀 윤곽제어)

  • Lee, Gun-Bok;Ko, Tae-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.435-437
    • /
    • 1998
  • In this productive system, it needs to control the each axis motion harmoniously to perform accurately for the manufacturing, transporting and printing. Independent Axis Control usually used for this objection. However, if Independent Axis Control mismatched the parameter of each axis system or in the case of free curve tracking or the case of high speed control, there would be big contour error so that cannot achieve control objection. As a result, there is Contour Control method suggested to supply for this defect. This paper carried modeling of biaxial system and implemented Independent Axis Control & Contouring Control on straight line, circular, and coner path by simulation and experiment. If feedrate increased, contour error growed. In consequence, according to this factor, we introduced contouring controller, so we could find the fact that contour error was reduced more than that of independent axis control about each path.

  • PDF

An Effective Adaptive Autopilot for Ships

  • Le, Minh-Duc;Nguyen, Si-Hiep;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.720-723
    • /
    • 2005
  • Ship motion is a complex controlled process with several hydrodynamic parameters that vary in wide ranges with respect to ship load condition, speed and surrounding conditions (such as wind, current, tide, etc.). Therefore, to effectively control ships in a designed track is always an important task for ship masters. This paper presents an effective adaptive autopilot ships that ensure the optimal accuracy, economy and stability characteristics. The PID control methodology is modified and parameters of a PID controller is designed to satisfy conditions for an optimal objective function that comprised by heading error, resistance and drift during changing course, and loss of surge velocity or fuel consumption. Designing of the controller for course changing process is based on the Model Reference Adaptive System (MRAS) control theory, while as designing of the automatic course keeping process is based on the Self Tuning Regulator (STR) control theory. Simulation (using MATLAB software) in various disturbance conditions shows that in comparison with conventional PID autopilots, the designed autopilot has several notable advantages: higher course turning speed, lower swing of ship bow even in strong waves and winds, high accuracy of course keeping, shorter time of rudder actions smaller times of changing rudder direction.

  • PDF

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.