• Title/Summary/Keyword: high-speed machining

Search Result 630, Processing Time 0.025 seconds

A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(II) -Comparison of Hardening Characteristics by the Parts Applied Heat Treatment- (금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(II) - 표면경화의 적용 부위에 따른 열처리 특성의 차이 -)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1048-1054
    • /
    • 2011
  • Laser surface hardening process is the method of hardening surface by inducing rapid self quenching of laser injected area through transfer of surface heat to inside after rapid heating of laser injected area only by high density energy heat source. This surface treatment method does not involve virtually any thermal deformation by heat treatment nor accompanies any other process after surface hardening treatment. In addition, allowing local machining, this method is a surface treatment method suitable for die with complicated shape. In this study, die material cast iron was surface-treated by using high power diode laser with beam profile suitable for heat treatment. Since the shapes of die differ by press die process, specimens were heat-treated separately on plane and corner depending on the applied parts. At this time, corner heat treatment was done with optic head inclined at $10^{\circ}$. As a result, corner heat treatment easily involves concentration of heat input due to limitation of heat transfer route by the shapes compared with plane part, so the treatment accomplished hardening at faster conveying speed than plane heat treatment.

Titanium alloy bolt hot forging process analysis through plastic working analysis (소성 가공 해석을 통한 티타늄 합금 볼트 열간 단조 공정 분석)

  • Choi, Doo-Sun;Kim, Tae-Min;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Kim, Do-Un
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Titanium alloy has been in the spotlight as a core material in high-tech industries that require high strength and light weight because it has excellent strength and corrosion resistance and strength is higher than that of steel. Therefore, in various industries, existing steel products are intended to be replaced with titanium alloys. Titanium alloys can cause cutting tool breakage during cutting, and heat generated during cutting does not dissipate, accumulates in tools and workpieces, resulting in large wear and tear on thin workpieces. In addition, since titanium alloy is a metal with high chemical activity, the wear of the tool becomes more severe when the cutting speed is high, so machining of titanium bolt through cutting is very disadvantageous in terms of productivity. Therefore, the production of bolts using titanium alloys is being produced through a forging process to improve productivity and product quality. In this paper, hot forging molding analysis was performed on bolts used for fastening automobile parts using Ti-6Al-4V alloy, which is the most commonly used titanium alloy.

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Fabrication of Micro-Lens Array with Long Focal Length for Confocal Microscopy (공초점 현미경용 장초점 마이크로렌즈 제작)

  • Kim, Gee-Hong;Lim, Hyung-Jun;Jeong, Mi-Ra;Lee, Jae-Jong;Choi, Kee-Bong;Lee, Hyung-Seok;Do, Lee-Mi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.472-477
    • /
    • 2011
  • This paper shows the method of fabrication of a micro lens array comprised of a Nipkow disk used in a large-area, high-speed confocal microscopy. A Nipkow disk has two components, a micro lens array disk and a pinhole array disk. The microlens array focuses illumination light onto the pinhole array disk and redirects reflected light from a surface to a sensor. The micro lens which are positioned in order on a disk have a hemispheric shape with a few tens of micron in diameter, and can be fabricated by a variety of methods like mechanical machining, semiconductor process, replication process like imprinting process. This paper shows how to fabricate the micro lens array which has a long focal length by reflow and imprinting process.

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

A Study on the Wear Estimation of End Mill Using Sound Frequency Analysis (음향주파수 분석에 의한 엔드밀의 마모상태 추정에 관한 연구)

  • Lee, Chang-Hee;Cho, Taik-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1287-1294
    • /
    • 2003
  • The wear process of end mill is so complicated process that a more reliable technique is required for the monitoring and controlling the tool life and its performance. This research presents a new tool wear monitoring method based on the sound signal generated on the machining. The experiment carried out continuous-side-milling for 4 cases using the high-speed-steel end mill under wet condition. The sound pressure was measured at 0.5m from the cutting zone by a dynamic microphone, and was analyzed at frequency domain. As the cutter impacts the workpiece surface, a situation of farced vibration arises in which the dominant forcing frequency is equal to the tooth passing frequency of the cutter. The tooth passing frequency appears as a harmonics form, and end mill flank wear is related with the first harmonic. It is possible to detect end . mill flank wear. This paper proposed the new method of the end mill wear detection.

A Study on the Improvement of Physical Properties for Titanium Alloy by the Grinding Conditions (연삭가공조건에 따른 티타늄 합금의 물성치 향상에 관한 연구)

  • Kim, Won Il;Lee, Yun Kyung;Wang, Duck Hyun;Heo, Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2001
  • Ti-6Al-4V alloy can be obtained the stability of organization and product treasure, the evaluation of the cutting ability and the mechanical characteristics after the heat treatment of annealing, solution and aging. The difficulty in machining titanium alloy is how treat the heat generated during the process. Because the heat conductivity of titanium alloy is regardfully low, the heat generated during grinding is accumulated in workpiece. and it causes the increasing of grinding wheel grits' wear and makes the ground surface rough. So, these characteristics in grinding of titanium alloy will change the mechanical properties of the titanium alloy. From this study. the mechanical characteristics of annealed one and solution and aging one treated Ti-6Al-4V alloy after grinding was concerned with checking out the bending strength and hardness. For the result, both of bending strength and hardness were increased at the burned area on the surface. Roughness value was remarkably high at the table speed of 10m/min.

  • PDF

Mechanical Properties and End-milling Characteristic of AIN-hBN Based Machinable Ceramics (AIN-hBN계 머시너블 세라믹스의 기계적 특성 및 엔드밀링 가공성 평가)

  • Beck, Si-Young;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, machining characteristics of AIN-hBN composites were evaluated in end-milling process. As a first step, AIN-hBN composite specimens with various hBN contents were prepared using hot press method. Material properties of the composites, such as relative density, Young's modulus and fracture toughness, were measured and compared. Then, a series of end-milling experinients were performed under various cutting conditions by changing cutting speed, depth-of-cut and feed rate. Cutting force variations were measured using a tool dynamometer during the cutting experiments. Machined surfaces of the specimens were observed using SEM and a surface pro filer to investigate the surface integrity changes. The cutting force decreased with an increases of hBN content. The cutting process was almost impossible for monolithic AIN, owing to severe chipping. In contrast, at high content of hBN, surface damage and chipping decreased, and better surface roughness can be obtained.

Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity

  • Azizi, Mohamed Walid;Keblouti, Ouahid;Boulanouar, Lakhdar;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • In the present work, the optimization of machining parameters to achieve the desired technological parameters such as surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models.

Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining (볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구)

  • Moon, Hong-Man;Kim, Sang-Won;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.