• Title/Summary/Keyword: high-speed imaging

Search Result 240, Processing Time 0.026 seconds

Spaceborne Data Link Design for High Rate Radar Imaging Data Transmission (고속 레이다 영상자료 전송을 위한 위성탑재 데이터 링크 설계)

  • Gwak, Yeong-Gil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.117-124
    • /
    • 2002
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution because of the strict requirement for the real-time data transmission of the massive SAR data in a limited time of mission. In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath. The designed data link module can be effectively used for the spaceborne and airborne applications which requires to expand the high speed data link capability.

Two Paralleled Four Quadrant DC Chopper for Gradient Coil Magnetic Fields in MRI System

  • Park, Hyung-Beom;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.22-27
    • /
    • 2009
  • This paper presents a two-paralleled four quadrant DC chopper type PWM power conversion circuit in order to generate a gradient magnetic field in the Magnetic Resonance Imaging (MRI) system. This circuit has 8-IGBTs at their inputs/outputs to realize further high-power density, high speed current tracking control, and to get a low switching ripple amplitude in a controlled current in the Gradient Coils (GCs). Moreover, the power conversion circuit has to realize quick rise/fall response characteristics in proportion to various target currents in GCs. It is proposed in this paper that a unique control scheme can achieve the above objective DSP-based control system realize a high control facility and accuracy. It is proved that the new control system will greatly enlarge the diagnostic target and improve the image quality of MRI.

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

MRI의 현황과 전망

  • 전희국
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.125-130
    • /
    • 1988
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of $0.1^{\circ}C$ under the spatial resolution of lmrad, the image matrix size of $256 {\times} 240, $ and tile imaging time of 4 seconds.

  • PDF

Multi-Detector Row CT of the Central Airway Disease (Multi-Detector Row CT를 이용한 중심부 기도 질환의 평가)

  • Kang, Eun-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.3
    • /
    • pp.239-249
    • /
    • 2003
  • Multi-detector row CT (MDCT) provides faster speed, longer coverage in conjunction with thin slices, improved spatial resolution, and ability to produce high quality muliplanar and three-dimensional (3D) images. MDCT has revolutionized the non-invasive evaluation of the central airways. Simultaneous display of axial, multiplanar, and 3D images raises precision and accuracy of the radiologic diagnosis of central airway disease. This article introduces central airway imaging with MDCT emphasizing on the emerging role of multiplanar and 3D reconstruction.

A Handheld Probe Based Optical Coherence Tomography System for Diagnosis of Dental Calculus (치석 진단용 소형 프로브 기반 광간섭단층촬영 시스템)

  • Lee, Chang-Ho;Woo, Chai-Kyoung;Jung, Woong-Gyu;Kang, Hyun-Wook;Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.217-222
    • /
    • 2012
  • Optical coherence tomography(OCT) is a noninvasive optical imaging tool for biomedical applications. OCT can provide depth resolved two/three dimensional morphological images on biological samples. In this paper, we integrated an OCT system that was composed of an SLED(Superluminescent Light Emitting Diode, ${\lambda}_0$=1305 nm bandwith= 141 nm), a reference arm adopting a rapid scanning optical delay line(RSOD) to get high speed imaging, and a sample arm that used a micro electro mechanical systems(MEMS) scanning mirror. The sample arm contained a compact probe for imaging dental structures. The performance of the system was evaluated by imaging in-vivo human teeth with dental calculus, and the results indicated distinct appearance of dental calculus from enamel, gum or decayed teeth. The developed probe and system could successfully confirm the presence of dental calculus with a very high spatial resolution($6{\mu}m$).

Development of the real-time Imaging Processing Board Using FPGA (FPGA를 이용한 고속 영상처리보드의 개발)

  • 류형규;박홍민
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.449-452
    • /
    • 1998
  • In this study, the basic image-board and algorithm has been developed to extract a road lane by modeling the driving process. The high speed processing enables an image capture, processing and prompt decision making. In order to high speed processing ASIC like FPGA was designed and integrated in one board system. The algorithm enabling road driving must recognize a straight and bend edge separately. The high speed image processing board using FPGA can be used in real-time decision makeing system for road driving and in the machine vision under bad working environments like a coal mine. And it also can be used in the safety control system in subway and in image input system of CCTV and CATV by designing the board to meet various user's needs.

  • PDF

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

Fast temporal detection of intracellular hydrogen peroxide by HyPer

  • Yang, Yu-Mi;Lee, Sung Jun;Shin, Dong Min
    • International Journal of Oral Biology
    • /
    • v.38 no.4
    • /
    • pp.169-173
    • /
    • 2013
  • HyPer is the genetically encoded biosensor of intracellular hydrogen peroxide ($H_2O_2$), the most stable of the reactive oxygen species (ROS) generated by living cells. HyPer has a high sensitivity and specificity for detecting intracellular $H_2O_2$ by confocal laser microscopy. However, it was not known whether high speed ratiometric imaging of $H_2O_2$ by HyPer is possible. We thus investigated the sensitivity of HyPer in detecting changes to the intracellular $H_2O_2$ levels in HEK293 and PC12 cells using a microfluorometer imaging system. Increase in the HyPer ratio were clearly evident on stimulations of more than $100{\mu}M$ $H_2O_2$ and fast changes in the HyPer ratio were observed on ratiometric fluorescent images after $H_2O_2$ treatment. These results suggest that HyPer is a potent biosensor of the fast temporal production of intracellular $H_2O_2$.