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Two Paralleled Four Quadrant DC Chopper for
Gradient Coil Magnetic Fields in MRl System

Hyung-Beom Park” - Sang—Pil Mun - Han—-Seok Park - Kyung—IL Woo™

Abstract

This paper presents a two-paralleled four quadrant DC chopper type PWM power conversion circuit in order
to generate a gradient magnetic field in the Magnetic Resonance Imaging (MRI) system. This circuit has
8-IGBTs at their inputs/outputs to realize further high-power density, high speed current tracking control, and
to get a low switching ripple amplitude in a controlled current in the Gradient Coils (GCs). Moreover, the power

conversion circuit has to realize quick rise/fall response characteristics in proportion to various target currents

in GCs. It is proposed in this paper that a unique control scheme can achieve the above objective DSP-based

control system realize a high control facility and accuracy. It is proved that the new control system will greatly
enlarge the diagnostic target and improve the image quality of MRL

Key Words : Two—Paralleled Four Quadrant DC Chopper, Gradient Coils(GCs), High Speed Current Tracking

Contro!, Magnetic Resonance maging(MRI)

1. Introduction

The MRI systems need a medical office
detecting a disease in early stages. It has good
points which is possible to take any section picture
in human body, unnecessary to give consideration
to side effects for the X- ray. The MRI systems
can get any image in human body, since the
hydrogen in the body radiates radio waves from a
resonance with changing magnetic fields {1]. To
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realize high-speed imaging, the gradient power
amplifiers require higher output power as well as
quick rise/fall response capability [2-4].

Considering this backdrop, a new power
conversion circuit for switch-mode gradient power
amplifiers in MRI systems is proposed in this
paper using a parallel connection of conventional
four quadrant DC chopper circuits with IGBT's at
their inputs/outputs, and a unique digital control
scheme for the circuit on the basis of optimal
control. Furthermore, preview digital control is
introduced into the amplifier with a corrective
control scheme applied to improve the control of
GC curent and attain  robustness. The
effectiveness of the above scheme is evaluated
through computer-aided analysis.
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Fig. 1. The parallel connection four quadrant DC chopper circuit with IGBTs

2. Digital Control Scheme for
Proposed Circuit

The discrete system state equation of the power
conversion circuit shown in Fig. 1 can be written
as

x(k +1) = Ax(k)+Bu(k -1)
y(k) = cx(k) o)

where,

x(k)=[ialk), k), iwi(k), k), vadk), valk),
icck)]'ER™, is the system state vector,
ulk=1)={varpitk-1), varpe (k-1), verps(k-1),
vrpak-1)]T ER" is the system input vector, and
YIO=[ia(l), icalk), inak), islk)J"ER™ is the
system output vector. A, B, and C are real
coefficient matrices with appropriate dimensions.

Since digital control involves a time lag, it is
necessary for the DSPs to consider the calculating
time. Therefore, the input signal wk-1) is
calculated between the sampling time k-1 and k.
The power switch devices are turmed on and off so
that the input voltages to each of the LCR filters
are given some pulses with magnitude vin or 0 and
width pi(k) (=1 to 4) centered during sampling
interval 7.

The pulse width vector p(k)={pi(k), pAk), p£k),
pik)]"ER™ will be derived in terms of the
following equation.
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p@)=EL)

vin 2

Although the same chopper inductor and
capacitor as LC low pass filters are connected
with each of the bridge arms, these are not
effective enough to eliminate the current ripple.
The basic concept of pulse generation procedure to
minimize the current ripple is illustrated in Fig. 2.
Using data sampled at t=(k-1)Ts, input vector
u(k) is calculated during a sampling interval Ts
with the pulses [pitk), psk)] centered in the
sampling interval Ts and the pulses [pk), pdk)]
equally divided in half and arranged on each side
of the sampling interval 7.

As a result of this pulse generation procedure,
the filter inductor currents irx and ire (or irsr and
irr2) which take the form of triangular-waves are
obtained as shown in Fig. 2. The ripples of filter
inductor currents are mutually can celedout, and
thus the ripple of the synthesized current
irartitaXor ipr+ie) becomes very small and its
frequency is twice as high (Js) as each of the
inductor currents(fs). The current into the GC may
be considered as been produced by the
superposttion of filter inductor currents irw and ire
(or iz and izx2). However a small current will flow
through the capacitor and in order to obtain better
control of the GC current, it should be taken into
consideration.

(23]
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Fig. 2. IGBT gate signal layout in the amplifier

3. The Design of Optimal
Control System

An error signal vector e(k)ER" is defined as
e(K)=yr(k)-y(k) where yrk)ER™ consists of
the output reference signals. Even though the GC
current is designed as the combination of two
target currents, vrs, the GC current will not
achieve the desired value since a current flows
through the capacitor G{G). Hence, in order to
overcome this error, a carrective expression is
added as

ec(k) = ¥ (k) + Re(k) - y(K)
= yrel_c(k) - y(k) @

where, Re(k)=Fc(k)x(k)

ok o o o0 o 0 0

Fo(k) - (k) 0 o 0 0 0
¢ 0 0 k) 0 0 0 0
0 0 0 k) 0 0 0

- iLal(k) + i'—ﬂl(k) _ iLgC(k)
c (k)= 2.0 (i (k) + 2 (K))
c:(k) = iLm(k) + iw:(k) + iLsc(k)

2.0x (iL,,,(k) + iLb:(k))

Ro(k) makes compensation for capacitor current

(24]

losses of each filter. Since Rd(k) is calculated each
sampling time, eqk) deals with the difference
between each filter current and reference, as usual.

In the design stages, we must take the
processing delay time into account and
compensate it. Assuming that the processing time,
which is regarded as input delay time, is equal to
a sampling interval 7s. The error system is
derived from eq.(3).

eck+1)] [l -CA -CBT e.(k)
x(k+1){=]0 A B x(k)
u(k) 0 0 0 | ulk-1)
0 Is

+{ 0 u(k)+| 0| yrerlk+1) @

Is 0

Xo(k +1)=Xo(k)+ G Au(k)+Gr Ayrerc(k +1)

where, A refers to the difference between the
values corresponding to the present sampling time
with that of the preceding sampling time.

A performance index ] is defined as follows :

{[XoT(k) AuT(k—l){g 0}{ xo(k):|

J=
0] Au(k-1)

k=1
+ AuT(R)HA() } 5

where, QER"" and HER"* are the weighting
factor matrices. According to optimal regulator
theory, Au(k) is derived by solving eq.(4), such
that eq.(5) is minimized.

Since the futuristic reference values are known
a priori, a preview control term is added to
improve the overall response of the control system.
On the basis of eq.(6), the improved digital optimal
system is illustrated in Fig. 3.
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Fig. 3. Improved digital optimal base preview control system in the proposed two paralleled bridges power

conversion PWM amplifier circuit

Au(k) = Fy X (k) + Fyp AR(k +1)
= Fneec(k)+ FDxAx(k)
+Fp Aulk - 1)+ FypAy,, (k+1)
F, =-[H+ G PG]'G"Po[0G] »
=F,[®G]
Fyp = F,Gp
P=Q+®"PO-"PG[H +G"PG|'GTPK]|

)

4. Simulation Result and Their
Discussions

The IGBTs now in use have a maximum
operating frequency of about 20[kHz] that will
maintain its stability.

Even though it is lower than devices such as
MOSFETs or SITs its power levels are over
1,000[V]/100[AL

The circuit and control technique to overcome
the disadvantage of low speed has been already
described in this paper. As a result, IGBTs will be
more suitable for practical power applications with
high-speed operation. The simulation specifi-
cations are given in Table 1.

The parasitic resistors find each of the filter
inductors which have various values from 0.05 to
01[Q]. It is our intention to have different
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performance characteristics for the 2-bridge
modules connected in parallel.

If the filter inductor current control scheme is
not carried out successfully, heavy currents will
flow through the bridge circuits. Fig. 4 shows the
simulation results when a sinusoidal-wave is
inputted as the reference signal (y,,;).

Table 1. Design Specifications and Circuit
Parameters

Three-phase power source voltage 3F 300[V]
Sampling frequency fs 20.0[kHz}
Inductance | Loc | 200[mH]
Resistance | Roc 0.1
Four quadrant chopper | Inductance | Ly~Ls | 180[mH)
Capacitance |  C,,Cs 5.0(mF]
Resistance | R Ro | 10[Q]

Gradient coil
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Fig. 4. Simulation results under sinusoidal
pattern current tracking contro! scheme in
MRI systems

The current into the GC is with a frequency of
20Hz] and a peak of 150[AI(300[Ap—pl).

(25
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Furthermore, Fig. 5 shows GC current spectrums
when using control schemes of Fig. 3.
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Fig. 5. Current spectrum in GCs under improved
digital control scheme
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Fig. 6. Simulation results under trapezoidal
pattern current tracking control scheme in
MRI systems

These figures show us that sinusoidal current
wave forms could be controlled with fine shapes.
A typical ramped-square wave current (icc) with
the frequency of 200[Hz] and a peak of
150[AJ(300[Ap-pl) is next inputted into the GC
The simulation results are shown in Fig. 6.

It is confirmed that the rise/fall time of about
05[us] / 300[A] is achieved in 0.2 [mHI-GC. It can
be seen that a significantly high GC-current
tracking accuracy is achieved even while using
sampled data every 20[(kHz]. The distribution
control scheme is carried out adequately as
indicated in Fig. 7 since the filter inductor currents
will be equal at all the sampling points.

As shown in this figure, an operating frequency
that is double that of the IGBT's, that is 40[kHz],
is achieved with a very small ripple amplitude on
the flat-top of 150[Al.
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(b) Improved optimal preview control scheme

Fig. 7. Current waveforms of a each part

In case of controlled current with the correction
term, the GC current has better control ability than
with normal error systems. Normal systems have
a large deviation of the mean value from the
reference on the flat-top but whereas the
improved system has no deviation at all. It is
expected that the results shown in Fig. 4 to Fig.
7 will highly enlarge the diagnostic ability of MRL

This consumption power is dissipated as a heat
energy in MRI system. Fig. 8 gives the power loss
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in proposed amplifier. Since the MRI system is
expected to generate heat, we have to study how
to eliminate the heat.
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Fig. 8. Consumption power of the proposed
amplifier

5. Conclusions

The PWM power conversion amplifier with two
paralleled four quadrant DC chopper using IGBTs
has been introduced into the switch-mode gradient
power amplifiers in MRI systems in order to
overcome the limitation of the low frequency
switching characteristics and to obtain high output
power levels. A unique digital control scheme to
minimize the ripple and improve the rise/fall
response characteristics of the output current in
the GCs has also been proposed. It is a
characteristic that the system state vectors have
to be detected all at once at a given sampling time
Ts. This fact also helps to simplify the current
contro}l scheme.

The simulation results through computer-aided
analysis confirm that a high GC-current tracking
accuracy 1s achieved under high power output
levels in this system.
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