• 제목/요약/키워드: high-rise hybrid structural system

검색결과 16건 처리시간 0.021초

슬림형 바닥시스템을 이용한 고층 복합구조의 내진성능에 관한 해석적 연구 (Analysis of Seismic Performance of Slim Flat Plate System in High-rise Hybrid Structural System)

  • 하기주;박효선;박중현;최경렬;김대중;정재광
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.77-80
    • /
    • 2005
  • Recently the construction of high-rise hybrid type building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new hybrid structural system, using slim flat plate system, is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is ,with the economy and flexibility, flat plate system in high-rise hybrid type building. But it was focused in the seismic performance for high performance flat plate system in high-rise hybrid type building. Therefore, in the study, to develop the new flat-plate system with high ductile, durable, good performance for the applications. It was evaluated the seismic performance in the critical region of slab-column connection. And then high performance flat plate system, designed by the economy and safety, was developed as a new technique in the application of high-rise hybrid type building.

  • PDF

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

Parametric analysis of hybrid outrigger system under wind and seismic loads

  • Neethu Elizabeth Johna;Kiran Kamath
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.503-518
    • /
    • 2023
  • In tall constructions, the outriggers are regarded as a structural part capable of effectively resisting lateral loads. This study analyses the efficacy of hybrid outrigger system in high rise RCC building for various structural parameters identified. For variations in α, which is defined as the ratio of the relative flexural stiffness of the core to the axial rigidity of the column, static and dynamic analyses of hybrid outrigger system having a virtual and a conventional outrigger at two distinct levels were conducted in the present study. An investigation on the optimal outrigger position was performed by taking the results from absolute maximum inter storey drift ratio (ISDmax), roof acceleration (accroof), roof displacement (disproof), and base bending moment under both wind and seismic loads on analytical models having 40, 60 and 80 storeys. An ideal performance index parameter was introduced and was utilized to obtain the optimal position of the hybrid outrigger system considering the combined response of ISDmax, accroof, disproof and, criteria required for the structure under wind and seismic loads. According to the behavioural study, increasing the column area and outrigger arm length will maximise the performance of the hybrid outrigger system. The analysis results are summarized in a flowchart which provides the optimal positions obtained for each dependent parameter and based on ideal performance index which can be used to make initial suggestions for installing a hybrid outrigger system.

Telescopic columns as a new base isolation system for vibration control of high-rise buildings

  • Hosseini, Mahmood;Farsangi, Ehsan Noroozinejad
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.853-867
    • /
    • 2012
  • In this paper, a new type of passive energy dissipating system similar to added damping and stiffness (ADAS) and triangular added damping and stiffness (TADAS) is proposed and implemented in the analytical model of a building with hybrid structural system in the structure's base which we call it; Telescopic column. The behavior and performance of a high rise R.C. structure equipped with this system is investigated and compared with conventional base isolation systems such as rubber isolator bearings and friction pendulum bearings. For this purpose a series of ground acceleration records of the San Fernando, Long Beach and Imperial Valley earthquakes are used as the disturbing ground motions in a series of numerical simulations. The nonlinear numerical modeling which includes both material and geometric nonlinearities were carried out by using SAP2000 program. Results show suitable behavior of structures equipped with telescopic columns in controlling the upper stories drifts and accelerations.

내화피복이 생략된 합성보의 구조설계지침 제정을 위한 고찰 (Structural Design Guide Line of Composite Beam)

  • 홍원기;김진민;이경훈;박선치;김점한
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.93-98
    • /
    • 2008
  • As high rise buildings and large span spatial structures are constructed, new composite members and construction techniques are continuously developed. Wide flange steel beam can be easily constructed but the fire proofing protection is necessary and the cost is high. Nowadays environmental pollution of structures is becoming a big issue. The material of fire proofing protection is not allowed to use for structural members in several countries because it cab be a cause of environment pollution. Composite beam is a new hybrid beam system which is not needed a fire proofing protection process. Composite beam has better construction capacity than that of RC system and has more economic advantages than that of wide flange steel beam. In this paper, structural design guide lines of composite beam were provided to apply design and construction.

복합 튜브 구조시스템의 단위 모듈 개발에 대한 민감도 해석 (Sensitivity Analysis for Unit Module Development of Hybrid tube Structural System)

  • 이연종;박성수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.167-175
    • /
    • 2018
  • 본 연구에서는 튜브 구조시스템의 역학적 특징과 거동에 대한 이론과 모델 연구 등을 고찰하고, 단위 모듈 시스템의 적정성, 최적 위치. 최적 형태를 파악하고, 각 부재의 강성증감에 따른 부재 변수를 고려한 복합 튜브 구조시스템을 통계학적인 개념을 도입한 민감도 방법에 의한 해석을 수행하였다. 구체적인 방법에서 복합 튜브 구조시스템의 전단지연 현상과 횡적 거동에 대한 특성을 비교 고찰하였고, 또한 그 결과 치를 이용하여 향후 있을 초고층 복합 구조시스템의 설계와 실무에 대한 기초 자료를 제시하는데 연구의 목표를 두었다. 연구 결과로는 골조튜브 구조시스템만으로는 초고층 건물의 횡적 거동에는 효과적으로 대치하지 못하므로, 복합 튜브 구조시스템을 구성하여 횡하중 저항요소로 구성부재를 다양하게 변화시켜 검토한 결과, 각 부재 물량대비 가새 부재가 가장 큰 횡적 거동에 대한 영향 요소로 파악되었다. 골조 튜브구조는 물량대비 보가 기둥보다 횡변위 영향에 미치는 민감도의 정도가 크게 나타났고, 가새 튜브구조시스템의 경우는 가새가 물량대비 기둥 및 보와 비교하면 가장 민감한 것으로 나타났다.

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

Haut - A 21-storey Tall Timber Residential Building

  • Verhaegh, Rob;Vola, Mathew;de Jong, Jorn
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.213-220
    • /
    • 2020
  • This paper reflects on the structural design of Haut; a 21-storey high-end residential development in Amsterdam, the Netherlands. Construction started in 2019 and is in progress at the time of writing. Upon completion in 2021, Haut will be the first residential building in the Netherlands to achieve a 'BREEAM-outstanding' classification. The building will reach a height of 73 m, making it the highest timber structure in the Netherlands. It contains some 14.500 ㎡ of predominantly residential functions. It features a hybrid concrete-timber stability system and concrete-timber floor panels. This paper describes the concepts behind the structural design for Haut and will touch upon the main challenges that have arisen from the specific combination of characteristics of the project. The paper describes the design of the stability system and -floor system, the analysis of differential movements between concrete and timber structures and wind vibrations. The paper aims to show how the design team has met these specific challenges by implementing a holistic design approach and integrating market knowledge at an early stage of the design.

Design and Construction of GINZA KABUKIZA

  • Kawamura, Hiroshi;Ishibashi, Yoji;Morofushi, Tsutomu;Saragai, Yasuyuki;Inubushi, Akira;Yasutomi, Ayako;Fuse, Naohiko;Yoshifuku, Manabu;Saitoh, Kouji
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.233-241
    • /
    • 2016
  • This paper describes the structural solution for the design of a 29-story high-rise tower, which features a large office space above the Kabukiza Theatre. Kabuki is a type of Japanese traditional drama, and Kabukiza is the home building of Kabuki. GINZA KABUKIZA is the fifth generation of the Kabukiza Theatre, the first of which was built in 1889. In order to support 23 stories of office space above the theater - featuring a large void in plan - two 13-meter-deep mega-trusses, spanning 38.4 meters, are installed at the fifth floor of the building. Steelwork is used as a primary material for the structure above-ground, and a hybrid response control system using a buckling-restrained brace and oil damper is adopted in order to achieve a high seismic performance. This paper also describes the erection process of installing hydraulic jacks directly above the mega-truss at column bases, in order to keep the structure above the truss level during construction. The temple architecture of the previous Kabukiza is carefully restored by incorporating contemporary light-weight materials supported by steelwork.