• Title/Summary/Keyword: high-resolution spatial data

Search Result 764, Processing Time 0.022 seconds

Performance of NCAR Regional Climate Model in the Simulation of Indian Summer Monsoon (NCAR 지역기후모형의 인도 여름 몬순의 모사 성능)

  • Singh, Gyan Prakash;Oh, Jai-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Increasing human activity due to rapid economic growth and land use change alters the patterns of the Asian monsoon, which is key to crop yields in Asia. In this study, we tested the performance of regional climate model (RegCM3) by simulating important components of Indian summer monsoon, including land-ocean contrast, low level jet (LLJ), Tibetan high and upper level Easterly Jet. Three contrasting rain years (1994: excess year, 2001: normal year, 2002: deficient year) were selected and RegCM3 was integrated at 60 km horizontal resolution from April 1 to October 1 each year. The simulated fields of circulations and precipitation were validated against the observation from the NCEP/NCAR reanalysis products and Global Precipitation Climatology Centre (GPCC), respectively. The important results of RegCM3 simulations are (a) LLJ was slightly stronger and split into two branches during excess rain year over the Arabian Sea while there was no splitting during normal and deficient rain years, (b) huge anticyclone with single cell was noted during excess rain year while weak and broken into two cells in deficient rain year, (c) the simulated spatial distribution of precipitation was comparable to the corresponding observed precipitation of GPCC over large parts of India, and (d) the sensitivity experiment using NIMBUS-7 SMMR snow data indicated that precipitation was reduced mainly over the northeast and south Peninsular India with the introduction of 0.1 m of snow over the Tibetan region in April.

Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry (무인 항공사진측량에 의한 농경지 필지 경계설정 정확도)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • In recent years, UAV Photogrammetry based on an ultra-light UAS(Unmanned Aerial System) installed with a low-cost compact navigation device and a camera has attracted great attention through fast and accurate acquirement of geo-spatial data. In particular, UAV Photogrammetry do gradually replace the traditional aerial photogrammetry because it is able to produce DEMs(Digital Elevation Models) and Orthophotos rapidly owing to large amounts of high resolution image collection by a low-cost camera and image processing software combined with computer vision technique. With these advantages, UAV-Photogrammetry has therefore been applying to a large scale mapping and cadastral surveying that require accurate position information. This paper presents experimental results of an accuracy performance test with images of 4cm GSD from a fixed wing UAS to demarcate parcel boundaries in agricultural area. Consequently, the accuracy of boundary point extracted from UAS orthoimage has shown less than 8cm compared with that of terrestrial cadastral surveying. This means that UAV images satisfy the tolerance limit of distance error in cadastral surveying for the scale of 1: 500. And also, the area deviation is negligible small, about 0.2%(3.3m2), against true area of 1,969m2 by cadastral surveying. UAV-Photogrammetry is therefore as a promising technology to demarcate parcel boundaries.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.

ESTIMATING THE VOLUME OF CONSTRUCTION-WASTE LANDFILL USING GEOPHYSICAL TECHNIQUES (물리탐사 기법을 이용한 건축 폐기물 매립지의 규모 파악)

  • Mun,Yun-Seop;Lee,Tae-Jong;Lee,Chae-Yeong;Yun,Jun-Gi
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Dipole-dipole resistivity and ground penetrating radar(GPR) surveys were performed on an abandoned landfill site filled with asbestos containing material. The main purpose of the study was to estimate spatial extension and volume of the landfill for evaluting the cost for developing appropriate remedial alternatives. Assuming that the bedrock is within 10 m depth, dipole spacings of 2, 2.5 and 5m were set for six survey lines for resistivity measurements. For More detailed information, GPR suvey using 225 Mhz antenna was carried out for twelve survey lines for the shallower information. DC resistivity structures showed few tens ~ hundreds ohm-m for the landfill or alluvial laver, and 1,000~ 5,000 ohm-m for the bedrock. The depth to bedrock is found out to be approximately 5m. GPR survey results represented very clear reflection and/or diffraction events from the boundaries as well as from the blocky construction wastes. With high-resolution GPR survey, depth of the bedrock was resolved up to 2m, which in turn, could be a good indicator for estimating the volume of the landfill. Those depths of bedrock were confirmed by backhoe excavation data for 13 sites. The total area and volume of the landfill were to be approximately 3,953 .$m^2$ and 4,033 $m^3$, respectively.

  • PDF

Effective Compression of the Surveillance Video with Region of Interest (관심영역 구분을 통한 감시영상시스템의 효율적 압축)

  • Ko, Mi-Ae;Kim, Young-Mo;Koh, Kwang-Sik
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.95-102
    • /
    • 2003
  • In surveillance video system, there are many classes of images and some spatial regions are more important than other regions. The conventional compression method in this system have been compressed there full frames without classfying them depend on their important parts. To improve the accuracy of the image coding and deliver effective compression for the surveillance video system, it was necessary to separate the regions according to their importance. In this paper, we propose a new effective surveillance video image compression method. The proposed scheme defines importance based three-level region of interest block in a frame, such as background, motion object block, and the feature object block. A captured video image frame can be separated to these three different levels of block regions. And depends on the priority, each block can be modified and compressed in different resolution, compression ratio and qualify factor. Therefore, in surveillance video system, this algorithm not only reduces the image processing time and space, but also guarantees the Important image data in high quality to acquire the system's goal.

Improvement of Ortho Image Quality by Unmanned Aerial Vehicle (UAV에 의한 정사영상의 품질 개선 방안)

  • Um, Dae-Yong;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.568-573
    • /
    • 2018
  • UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.

Feasibility Assessment of Spectral Band Adjustment Factor of KOMPSAT-3 for Agriculture Remote Sensing (농업관측을 위한 KOMPSAT-3 위성의 Spectral Band Adjustment Factor 적용성 평가)

  • Ahn, Ho-yong;Kim, Kye-young;Lee, Kyung-do;Park, Chan-won;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1369-1382
    • /
    • 2018
  • As the number of multispectral satellites increases, it is expected that it will be possible to acquire and use images for periodically. However, there is a problem of data discrepancy due to different overpass time, period and spatial resolution. In particular, the difference in band bandwidths became different reflectance even for images taken at the same time and affect uncertainty in the analysis of vegetation activity such as vegetation index. The purpose of this study is to estimate the band adjustment factor according to the difference of bandwidth with other multispectral satellites for the application of KOMPSAT-3 satellite in agriculture field. The Spectral band adjustment factor (SBAF) were calculated using the hyperspectral satellite images acquired in the desert area. As a result of applying SBAF to the main crop area, the vegetation index showed a high agreement rate of relative percentage difference within 3% except for the Hapcheon area where the zenith angle was 25. For the estimation of SBAF, this study used only one set of images, which did not consider season and solar zenith angle of SBAF variation. Therefore, long-term analysis is necessary to solve SBAF uncertainty in the future.

Past, Present and Future of Geospatial Scheme based on Topo-Climatic Model and Digital Climate Map (소기후모형과 전자기후도를 기반으로 한 지리공간 도식의 과거, 현재 그리고 미래)

  • Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.268-279
    • /
    • 2021
  • The geospatial schemes based on topo-climatology have been developed to produce digital climate maps at a site-specific scale. Their development processes are reviewed here to derive the needs for new schemes in the future. Agricultural and forestry villages in Korea are characterized by complexity and diversity in topography, which results in considerably large spatial variations in weather and climate over a small area. Hence, the data collected at a mesoscale through the Automated Synoptic Observing System (ASOS) operated by the Korea Meteorological Administration (KMA) are of limited use. The geospatial schemes have been developed to estimate climate conditions at a local scale, e.g., 30 m, lowering the barriers to deal with the processes associated with production in agricultural and forestry industries. Rapid enhancement of computing technologies allows for near real-time production of climate information at a high-resolution even in small catchment areas and the application to future climate change scenarios. Recent establishment of the early warning service for agricultural weather disasters can provide growth progress and disaster forecasts for cultivated crops on a farm basis. The early warning system is being expanded worldwide, requiring further advancement in geospatial schemes and digital climate mapping.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques (드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발)

  • Ryu, Jae-Hyun;Han, Jung-Gon;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.535-543
    • /
    • 2022
  • A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.