DOI QR코드

DOI QR Code

Diversity, Spatial Distribution and Ecological Characteristics of Relict Forest Trees in South Korea

한국 산림유존목의 다양성, 공간 분포 및 생태 특성

  • CHO, Hyun-Je (Department of Forest Business, Dongyang University) ;
  • Lee, Cheol-Ho (Plant Conservation Division, Korea National Aboretum) ;
  • Shin, Joon-Hwan (Department of Forest Business, Dongyang University) ;
  • Bae, Kwan-Ho (School of Ecology and Environmental System, Kyungpook National University) ;
  • Cho, Yong-Chan (Plant Conservation Division, Korea National Aboretum) ;
  • Kim, Jun-Soo (Nature and Forest Research Institute)
  • 조현제 (동양대학교 산림비지니스전공) ;
  • 이철호 (국립수목원 산림자원보존과) ;
  • 신준환 (동양대학교 산림비지니스전공) ;
  • 배관호 (경북대학교 생태환경시스템학부) ;
  • 조용찬 (국립수목원 산림자원보존과) ;
  • 김준수 (자연과숲연구소)
  • Received : 2016.10.02
  • Accepted : 2016.11.09
  • Published : 2016.12.31

Abstract

Forest resources utilization and variable disturbance history have been affected the rarity and conservation value of forest relict trees, which served as habitat for forest biodiversity, important carbon stock and cultural role include human and natural history in South Korea. This study was conducted to establish the baseline data for forest resources conservation by clarifying species diversity, spatial distribution and ecological characteristics (individual and habitat) of forest relict trees (DBH > 300 cm) based on the data getting from mountain trail, high resolution aerial photos and field professionals and field survey. As results, 54 taxa (18 family 32 genus 48 species 1 subspecies 3 variety and 2 form) as about 22% of tree species in Korea was identified in the field. 837 individuals of forest relict trees were observed and the majority of the trees was in Pinaceae, deciduous Fagaceae and Rosaceae, which families are abundant in population diversity. High elevation area was important to relict trees as mean altitudinal distribution was 1,200 m a.s.l as likely affected by human activity gradients and mid-steep slope and North aspect was important environment for the trees remain. Many individuals exhibited 'damage larger branch' (55.6%) and consequent relatively lower mean canopy coverages (below 80%). Synthetically, present diversity and abundance of relict forest trees in South Korea were the result of complex process among climate variation, local weather and biological factors and the trees of big and old were estimated to important forest biodiversity elements. In the future, clarifying the role and function of relict trees in forest ecosystem, in- and ex- situ programmes for important trees and habitat, and activities for building the background of conservation policy such as "Guideline for identifying and measurement of forest relict trees".

우리나라 산림의 이용 문화 및 다양한 교란사는 생물다양성 및 탄소저장의 생태학적, 그리고 인간 활동 및 자연사를 포함하는 문화적 기능을 수행하고 있는 오래된 큰 나무로서 유존목(relic tree)의 희귀성 및 보전 활동의 배경이 된다. 본 연구는 최근 10년간 고해상도 칼라항공사진과 현장답사 자료를 토대로 남한 전역의 산지에서 자연적으로 성립 및 분포하고 있는 산림유존목(줄기 둘레 300 cm 이상)의 다양성, 상태 및 그것의 서식 환경을 평가하고, 이를 통한 보전 기반을 조성하는데 있다. 본 연구를 통해 지금까지 확인된 남한 지역의 산림유존목은 총 54분류군(18과 32속 48종 1아종 3변종 및 2품종)으로서 우리나라 교목류의 약 22%에 해당하였다. 837개체의 산림유존목은 개체군이 풍부한 소나무과, 낙엽성 참나무과 및 장미과 수종에서 풍부하였다. 산림유존목은 인간의 활동 및 강도 구배에 따라 주로 고지대(평균해발 1,200 m), 중경사도 이상 및 북사면 지형에서 주로 잔존하고 있었다. 조사된 개체들은 '큰 가지 결손'상태(55.6%)가 가장 많았고, 이와 관련하여 생육 임분의 수관층 피도는 80% 이하로 다소 낮게 나타났다. 종합적으로, 산림유존목은 기후, 기상 및 생물학적 요인들의 복잡한 과정을 통하여 현재에 잔존하고 있는 중요한 산림생물다양성 요소로서 평가되었다. 향후, 산림생태계 내에서의 역할 및 기능, 개체 및 생육지를 활용한 현지 내 외 프로그램, 그리고 보전 정책화를 위한 활동이 요구된다.

Keywords

References

  1. Barlow, J., Peres, C.A., Lagan, B.O., and Haugaasen, T. 2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters 6: 6-8.
  2. Braun-Blanquet, J. 1964. Pflanzensoziologie Grundzuge der Vegetationskunde. 3rd ed., Springer, New York. pp. 865.
  3. Busing, R.T., Halpern, C.B., and Spies, T.A. 1995. Ecology of Pacific yew (Taxus brevifolia) in western Oregon and Washington. Conservation Biology 9: 1199-1207. https://doi.org/10.1046/j.1523-1739.1995.9051189.x-i1
  4. Cain, M.D. 1996. Hardwood sang fragmentation in a Pineoak forest of Southeastern Arkansas. The American Midland Naturalist 136: 72-823. https://doi.org/10.2307/2426632
  5. Camarero, J., Gutiérrez, E., Fortin, M.-J., and Ribbens, E. 2005. Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion. Journal of Biogeography 32: 1979-1992. https://doi.org/10.1111/j.1365-2699.2005.01333.x
  6. Cecile, J., Silva, L.R. and Anand, M. 2013. Old trees: large and small. Science 339(6122): 904-905. https://doi.org/10.1126/science.339.6122.904-a
  7. Cho, Y.C., Kim, K.S., Pi, J.H. and Lee, C.S. 2016. Restoration effects influenced by plant species and landscape context in Young-il region, Southeast Korea: Structural and compositional assessment on restored forest. Journal of Ecology and Environment 39: 1-10. https://doi.org/10.5141/ecoenv.2016.001
  8. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., and van den Belt, M. 1997. The value of the world's ecosystem services and natural capital. Nature 387: 253-260 https://doi.org/10.1038/387253a0
  9. Davis, J.W. 1983. Snags are for wildlife, p. 4-9. In: Snag habitat management: proceedings of the symposium. June 7-9, 1983, Northern Arizona University, Flagstaff. U. S. Forest Service. General Techical. Report.
  10. Douglas, M. 2012. Big, old trees in decline wolrdwide. http:// www.livescience.com/25310-big-trees-in-decline.html(2016. 8. 15.).
  11. Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., Carpenter, S.R., Essington, T.E., Holt, R.D., Jackson, J.B., Marquis, R.J., Oksanen, L., Oksanen, T., Paine, R.T., Pikitch, E.K., Ripple, W.J., Sandin, S.A., Scheffer, M., Schoener, T.W., Shurin, J.B., Sinclair, A.R., Soulé, M.E., Virtanen, R., and Wardle, D.A. 2011. Trophic downgrading of planet Earth. Science 333(6040): 301-306. doi:10.1126/science.1205106.
  12. Fedrigoa, M., Kasela, S., Bennettb, L.T., Roxburghc S.H., and Nitschkea, C.R. 2014. Carbon stocks in temperate forests of south-eastern Australia reflect large tree distribution and edaphic conditions. Forest Ecology and Management 334(15): 129-143. https://doi.org/10.1016/j.foreco.2014.08.025
  13. Franklin, J.F. 2012. The importance of Big, Old Trees. https://www.americanforests.org/blog/the-importance-of-big-oldtrees/(2016.8.15.).
  14. Franklin, J.F., Lindenmayer, D.B., MacMahon, J.A., McKee, A., Magnuson, J., Perry, D.A., Waide, R., and Foster, D.R. 2000. Threads of continuity. Conservation in Practice 1: 8-17 https://doi.org/10.1111/j.1526-4629.2000.tb00155.x
  15. Franklin, J.F., Spies, T.A., Pelt, R.V., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., and Chen, J. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399-423. https://doi.org/10.1016/S0378-1127(01)00575-8
  16. Franline, J.F., Shugart, H.H., and Harmon, M.E. 1987. Tree death as an ecological process. The causes, consequences, and variability of three mortality. Bioscience 37: 550-556. https://doi.org/10.2307/1310665
  17. Guerrant, E.O., Havens, K., and Maunder, M. 2004. Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Washington(DC), Island Press, Washington. pp. 419-438.
  18. Harvey, C.A. and Haber, W.A. 1988. Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agroforestry Systems 44(1): 37-68. https://doi.org/10.1023/A:1006122211692
  19. Heywood, V. 2009. Botanic gardens and genetic conservation. Sibbaldia: the Journal of Botanic Garden Horticulture 7: 5-18.
  20. Hirschmugla, M., Ofnera, M., Raggamb, J., and Schardta. M. 2007. Single tree detection in very high resolution remote sensing data. Remote Sensing of Environment 110(4): 533-544. https://doi.org/10.1016/j.rse.2007.02.029
  21. Ikin, K., Mortelliti, A., Stein, J., Michael, D., Crane, M., Okada, S., Wood, J., and Lindenmayer, D. 2015. Woodland habitat structures are affected by both agricultural land management and abiotic conditions. Landscape Ecology 30(8): 1387-1403. https://doi.org/10.1007/s10980-015-0193-5
  22. Iverson, L.R. and Prasad, A.M. 2001. Potential changes in tree species richness and forest community types following climate change. Ecosystems 4: 186-199. https://doi.org/10.1007/s10021-001-0003-6
  23. Jayasuriya, M.D.A., Dunn, G., Benyon, R., and O'Shaughnessy, P.J. 1993. Some factors affecting water yield from mountain ash (Eucalyptus regnans) dominated forests in south-east Australia. Journal of Hydrology 150: 345-367. https://doi.org/10.1016/0022-1694(93)90116-Q
  24. Kang, M.I. 2013. Stock-farming folklife and extinction of Mt. Halla sangsan-graze during the modern and contemporary. Tamla Munwha 43: 137-195. (In Korean with English abstract)
  25. Keeton, W.S. and Franklin, J.F. 2005. Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests?. Ecological Monographs 75: 103-118. https://doi.org/10.1890/03-0626
  26. Keith, H., Lindenmayer, D.B., Mackey, B.G., Blair, D., Carter, L., McBurney, L., Okada, S., and Konishi-Nagano, T. 2014. Accounting for biomass carbon stock change due to wildfire in temperate forest landscapes in Australia. PLoS One 9: e107126. https://doi.org/10.1371/journal.pone.0107126
  27. Kim, J.S. and Kim, T.Y. 2011. Woody Plants of Korean Peninsula. Dolbegae, Paju. (In Korean)
  28. Korea Forest Conservation Association. 2007. Forest relict plant species and large old trees: Bakdudaegan Areas(I). pp.555. (In Korean)
  29. Korea Forest Service. 2015. Korean Plant Names Index. http://www.nature.go.kr/kpni/SubIndex.do(2016.7.1.) (In Korean).
  30. Korea Forest Service. 2016. Conservation and management technique for forest relict trees(I). Research and Development Project of forestry technology. 1st Research Report. pp. 55. (In Korean).
  31. Korea Green Promotion Agency. 2013. Korea Big Tree (round-up volume). pp. 447. (In Korean).
  32. Kozlowski, G., Gibbs, D., Huan, F., Frey, D., and Gratzfeld, J. 2012. Conservation of threatened relict trees through living ex situ collections: lessons from the global survey of the genus Zelkova (Ulmaceae). Biodiversity and Conservation 21(3): 671-685. https://doi.org/10.1007/s10531-011-0207-9
  33. Laurance, W. 2012. How the mighty are fallen. New Scientist 213: 39-41.
  34. Lindenmayer, D.B. and Laurance, W.F. 2016. The ecology, distribution, conservation and management of large old trees. Biological Reviews. doi:10.1111/brv.12290.
  35. Lindenmayer, D.B., Blanchard, W., Blair, D., McBurney, L., and Banks, S. 2016. Environmental and human drivers influencing large old tree abundance in Australian wet forests. Forest Ecology and Management 372: 226-235. https://doi.org/10.1016/j.foreco.2016.04.017
  36. Lindenmayer, D.B., Blanchard, W., McBurney, L., Blair, D., Banks, S., Likens, G.E., Franklin, J.F., Laurance, W.F., Stein, J.A., and Gibbons, P. 2012. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One 7(10): e41864. https://doi.org/10.1371/journal.pone.0041864
  37. Lindenmayer, D.B., Laurance, W.F., and Franklin, J.F. 2012. Global decline in large old trees. Science 338: 1305-1306. https://doi.org/10.1126/science.1231070
  38. López-Tirado, J. and Hidalgo, P.J. 2014. A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: a reliable management tool for reforestation. Forest Ecology and Management 330: 105-114. https://doi.org/10.1016/j.foreco.2014.07.009
  39. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, DU., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., and Wardle, DA. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804-808. https://doi.org/10.1126/science.1064088
  40. Lutz, J.A., Larson, A.J., Swanson, M.E., and Freund, J.A. 2012. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest. PLoS ONE 7(5): e36131. https://doi.org/10.1371/journal.pone.0036131
  41. Mattias, E., Anna-Maria, E., and Marc-André, V. 2016. The importance of large-tree retention for the persistence of old-growth epiphytic bryophyte Neckera pennata in selection harvest systems. Forest Ecology and Management 372: 143-148. https://doi.org/10.1016/j.foreco.2016.04.013
  42. Mcclelland, B.R. and Frissell, S.S. 1975. Identifying forest snags useful for hole-nesting birds. Journal of Forestry 73: 414-417.
  43. Meyer, R.L. 1992. Management of dead trees and stubs. American Pulpwood Association, Technical Release 92-R-l1. pp. 2.
  44. Miehe, G., Miehe, S., Will, M., Opgenoorth, L., Duo, L., Dorgeh, T., and Liu, J. 2008. An inventory of forest relicts in the pastures of Southern Tibet(Xizang A.R., China). Plant Ecology 194(2): 157-177. https://doi.org/10.1007/s11258-007-9282-0
  45. Moga, C.I., Samoila, C., Ollerer, K., Bancila, R.I., Reti, K.- O., Craiveanu, C., Poszet, S., Rakosy, L., and Hartel, T. 2016. Environmental determinants of the old oaks in wood-pastures from a changing traditional social-ecological system of Romania. Ambio 45: 480-489. https://doi.org/10.1007/s13280-015-0758-1
  46. Palik, B.J., Ostry, M.E., Venette, R.C., and Abdela, E. 2011. Fraxinus nigra (black ash) dieback in Minnesota: regional variation and potential contributing factors. Forest Ecology and Management 261: 128-135. https://doi.org/10.1016/j.foreco.2010.09.041
  47. Petit, R.J., Hampe, A., and Cheddadi, R. 2005. Climate change and tree phylogeography in the Mediterranean. Taxonomy 54: 877-885. https://doi.org/10.2307/25065474
  48. Phillips, N.G., Buckley, T.N. and Tissue, D.T. 2008. Capacity of old trees to respond to environmental change. Journal of Integrative Plant Biology 50: 1355-1364. https://doi.org/10.1111/j.1744-7909.2008.00746.x
  49. QGIS Development Team. 2015. QGIS ver. 2.12.2. http://www.qgis.org/ko/site/forusers/download.html(2016. 2.17).
  50. Remm, J. and Lõhmus, A. 2011. Tree cavities in forests - the broad distribution pattern of a keystone structure for biodiversity. Forest Ecology and Management 262: 579-585. https://doi.org/10.1016/j.foreco.2011.04.028
  51. Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W., Wallach, A.D., and Wirsing, A.J. 2014. Status and ecological effects of the world's largest carnivores. Science 343(6167): 1241484. doi: 10.1126/science.1241484.
  52. Salick, J., Amend, A., Anderson, D., Hoffmeister, K., Gunn, B. and Zhendong, F. 2007. Tibetan sacred sites conserve old growth trees and cover in the eastern Himalayas. Biodiversity and Conservation 16: 693-706. https://doi.org/10.1007/s10531-005-4381-5
  53. Slik, J.W.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., Collins, M., Dauby, G., Ding, Y., Doucet, J.-L., Eler, E., Ferreira, L., Forshed, O.,Fredriksson, G., Gillet, J.-F., Harris, D., Leal, M., Laumonier, Y., Malhi, Y., Mansor, A., Martin, E., Miyamoto, K., Araujo-Murakami, A., Nagamasu, H., Nilus, R., Nurtjahya, E., Oliveira, A., Onrizal, O., Parada-Gutierrez, A., Permana, A., Poorter, L., Poulsen, J., Ramirez-Angulo, H., Reitsma, J., Rovero, F., Rozak, A., Sheil, D., Silva-Espejo, J., Silveira, M., Spironelo, W., ter Steege, H., Stevart, T., Navarro-Aguilar, G.E., Sunderland, T., Suzuki, E., Tang, J., Theilade, I., van der Heijden, G., van Valkenburg, J., Do, T.V., Vilanova, E., Vos, V., Wich, S., Wöll, H., Yoneda, T., Zang, R., Zhang, M.- G., and Zweifel, N. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22(12): 1261-1271. https://doi.org/10.1111/geb.12092
  54. Spies, T.A. and Franklin, J.F. 1991. The structure of natural young, mature and old-growth Douglas-fir forests in Oregon and Washington. pp. 91-109. In: Ruggiero, L.F., Aubry, K.B., Carey, A.B., and Huff, M.H. coordinators. Wildlife and vegetation of unmanaged Douglas-fir forests. General technical report PNW-GTR-285. U.S. Forest Service, Portland, Oregon.
  55. Stephenson, N.L., Das, A.J., Condit, R., Russo, S.E., Baker, P.J., Beckman, N.G., Coomes, D.A., Lines, E.R., Morris, W.K., Rüger, N., lvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S.J., Duque, Á., AEwango, C.N., Flores, O., Franklin, J.F., Grau, H.R., Hao, Z., Harmon, M.E., Hubbell, S.P., Kenfack, D., Lin, Y., Makana, J.R., Malizia, A., Malizia, L.R., Pabst, R.J., Pongpattananurak, N., Su, S.H., Sun, I-F., Tan, S., Thomas, D., van Mantgem, P.J., Wang, X., Wiser, S.K., and Zavala, M.A. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90-93. https://doi.org/10.1038/nature12914
  56. Tng, D.Y.P., Williamson, G.J., Jordan, G.J., and Bowman, D.M.J.S. 2012. Giant eucalypts-globally unique fire-adapted rainforest trees? New Phytologist 196: 1001-1014. https://doi.org/10.1111/j.1469-8137.2012.04359.x
  57. Van Pelt, R. 2007. Identifying Mature and Old Forests in Western Washington. Washington State, Department of Natural Resources, Olympia, WA. pp. 108.
  58. Vanak, A.T., Shannon, G., Thaker, M., Page, B., Grant, R., and Slotow, R. 2011. Biocomplexity in large tree mortality: interactions between elephant, fire and landscape in an African savanna. Ecography 35: 315-321.
  59. Werner, F.A., Homeier, J., and Gradstein, S.R. 2005. Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 11: 21-40.
  60. Wood, J. and Lindenmayer, D.B. 2015. Woodland habitat structures are affected by both agricultural land management and abiotic conditions. Landscape Ecology 30: 1387-1403. https://doi.org/10.1007/s10980-015-0193-5

Cited by

  1. A Study on the Distribution and Dynamics of Relict Forest Trees and Structural Characteristics of Forest Stands in Gangwon Province, Korea vol.32, pp.2, 2018, https://doi.org/10.13047/KJEE.2018.32.2.165