• Title/Summary/Keyword: high-resolution satellite images

Search Result 583, Processing Time 0.03 seconds

Supervised Classification Systems for High Resolution Satellite Images (고해상도 위성영상을 위한 감독분류 시스템)

  • 전영준;김진일
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.301-310
    • /
    • 2003
  • In this paper, we design and Implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the m()st effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.

Application of Multi-Class AdaBoost Algorithm to Terrain Classification of Satellite Images

  • Nguyen, Ngoc-Hoa;Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.536-543
    • /
    • 2014
  • Terrain classification is still a challenging issue in image processing, especially with high resolution satellite images. The well-known obstacles include low accuracy in the detection of targets, especially for the case of man-made structures, such as buildings and roads. In this paper, we present an efficient approach to classify and detect building footprints, foliage, grass and road from high resolution grayscale satellite images. Our contribution is to build a strong classifier using AdaBoost based on a combination of co-occurrence and Haar-like features. We expect that the inclusion of Harr-like feature improves the classification performance of the man-made structures, since Haar-like feature is extracted from corner features and rectangle features. Also, the AdaBoost algorithm selects only critical features and generates an extremely efficient classifier. Experimental result indicates that the classification accuracy of AdaBoost classifier is much higher than that of the conventional classifier using back propagation algorithm. Also, the inclusion of Harr-like feature significantly improves the classification accuracy. The accuracy of the proposed method is 98.4% for the target detection and 92.8% for the classification on high resolution satellite images.

A Study on the Road Extraction Using Wavelet Transformation

  • Lee, Byoung-Kil;Kwon, Keum-Sun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.405-410
    • /
    • 1999
  • Topographic maps can be made and updated with satellite images, but it requires many human interactions that are inefficient and costly. Therefore, the automatizing of the road extraction procedures could increase efficiency in terms of time and cost. Although methods of extracting roads, railroads and rivers from satellite images have been developed in many studies, studies on the road extraction from satellite images of urbanized area are still not relevant, because many artificial components In the city makes the delineation of the roads difficult. So, to extract roads from high resolution satellite images of urbanized area, this study has proposed the combined use of wavelet transform and multi-resolution analysis. In consequence, this study verifies that it is possible to automatize the road extraction from satellite images of urbanized area. And to realize the automatization more completely, various algorithms need to be developed.

  • PDF

Image Fusion for Improving Classification

  • Lee, Dong-Cheon;Kim, Jeong-Woo;Kwon, Jay-Hyoun;Kim, Chung;Park, Ki-Surk
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1464-1466
    • /
    • 2003
  • classification of the satellite images provides information about land cover and/or land use. Quality of the classification result depends mainly on the spatial and spectral resolutions of the images. In this study, image fusion in terms of resolution merging, and band integration with multi-source of the satellite images; Landsat ETM+ and Ikonos were carried out to improve classification. Resolution merging and band integration could generate imagery of high resolution with more spectral bands. Precise image co-registration is required to remove geometric distortion between different sources of images. Combination of unsupervised and supervised classification of the fused imagery was implemented to improve classification. 3D display of the results was possible by combining DEM with the classification result so that interpretability could be improved.

  • PDF

Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2016
  • With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.

Detection of The Pine Trees Damaged by Pine Wilt Disease using High Resolution Satellite and Airborne Optical Imagery

  • Lee, Seung-Ho;Cho, Hyun-Kook;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.409-420
    • /
    • 2007
  • Since 1988, pine wilt disease has spread over rapidly in Korea. It is not easy to detect the damaged pine trees by pine wilt disease from conventional remote sensing skills. Thus, many possibilities were investigated to detect the damaged pines using various kinds of remote sensing data including high spatial resolution satellite image of 2000/2003 IKONOS and 2005 QuickBird, aerial photos, and digital airborne data, too. Time series of B&W aerial photos at the scale of 1:6,000 were used to validate the results. A local maximum filtering was adapted to determine whether the damaged pines could be detected or not at the tree level from high resolution satellite images, and to locate the damaged trees. Several enhancement methods such as NDVI and image transformations were examined to find out the optimal detection method. Considering the mean crown radius of pine trees, local maximum filter with 3 pixels in radius was adapted to detect the damaged trees on IKONOS image. CIR images of 50 cm resolution were taken by PKNU-3(REDLAKE MS4000) sensor. The simulated CIR images with resolutions of 1 m, 2 m, and 4 m were generated to test the possibility of tree detection both in a stereo and a single mode. In conclusion, in order to detect the pine tree damaged by pine wilt disease at a tree level from satellite image, a spatial resolution might be less than 1 m in a single mode and/or 1 m in a stereo mode.

The Application of Orbital Modeling and Rational Function Model for Ground Coordinate from High Resolution Satellite Data (고해상도 인공위성데이터로부터 지상좌표 결정을 위한 궤도모델링 및 RFM기법 적용)

  • Seo, Doo-Chun;Yang, Ji-Yeon;Lee, Dong-Han;Im, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Generation of accurate ground coordinates from high resolution satellite image are becoming increasingly of interest. The primary focus of this paper is to compute satellite direct sensor model (DSM) and rational function model (RFM) for accurate generation of ground coordinates from high resolution satellite images. Being based on this we presented an algorithm to be able to efficiently ground coordinates about large area with introducing RFM(rational function model) method applied to rigorous sensor modeling standing on basis of satellite orbit dynamics and collinearity equation, and sensor modeling of high-resolution satellite data like IKONOS, QuickBird, KOMPSAT-2 and others. The general high resolution satellite measures the position, velocity and attitude data of satellite using star, gyro, and GPS sensors.

  • PDF

Environmental Monitoring after Nakhodka Oil Spill and Utilization of GIS/GPS and Hi-resolution Satellite Images

  • Sawano, Nobuhiro
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.627-632
    • /
    • 2002
  • One main purpose of environmental monitoring after oil spill is developing ESI (Environmental Sensitivity) Maps. Environmental impacts caused by the spilt oil are strongly depending upon the coastal topology and geology. Monitoring all impacted shorelines is almost impossible; using high-resolution satellite images such as IKONOS greatly contributes to improve the efficiency of on-site researches, at the same time, reliability of ESI maps.

  • PDF

Automatic National Image Interpretability Rating Scales (NIIRS) Measurement Algorithm for Satellite Images (위성영상을 위한 NIIRS(Natinal Image Interpretability Rating Scales) 자동 측정 알고리즘)

  • Kim, Jeahee;Lee, Changu;Park, Jong Won
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.725-735
    • /
    • 2016
  • High-resolution satellite images are used in the fields of mapping, natural disaster forecasting, agriculture, ocean-based industries, infrastructure, and environment, and there is a progressive increase in the development and demand for the applications of high-resolution satellite images. Users of the satellite images desire accurate quality of the provided satellite images. Moreover, the distinguishability of each image captured by an actual satellite varies according to the atmospheric environment and solar angle at the captured region, the satellite velocity and capture angle, and the system noise. Hence , NIIRS must be measured for all captured images. There is a significant deficiency in professional human resources and time resources available to measure the NIIRS of few hundred images that are transmitted daily. Currently, NIIRS is measured every few months or even few years to assess the aging of the satellite as well as to verify and calibrate it [3]. Therefore, we develop an algorithm that can measure the national image interpretability rating scales (NIIRS) of a typical satellite image rather than an artificial target satellite image, in order to automatically assess its quality. In this study, the criteria for automatic edge region extraction are derived based on the previous works on manual edge region extraction [4][5], and consequently, we propose an algorithm that can extract the edge region. Moreover, RER and H are calculated from the extracted edge region for automatic edge region extraction. The average NIIRS value was measured to be 3.6342±0.15321 (2 standard deviations) from the automatic measurement experiment on a typical satellite image, which is similar to the result extracted from the artificial target.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.