• Title/Summary/Keyword: high-range water reducer

Search Result 26, Processing Time 0.031 seconds

Analysis of the influence of low viscosity typed high range water reducer on rheological properties high performance cement paste depending on SCM types and contents (저점도형 고성능 감수제가 다양한 혼화재 종류 및 치환량 조건에서 고성능 시멘트 페이스트의 레올로지 성능에 미치는 영향 분석)

  • Jeon, Jong-Woon;Son, Bae-Geun;Lee, Hyang-Sun;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.46-47
    • /
    • 2018
  • High performance concrete with low water-to-cement ratio has been widely used with increased demand of high rising buildings and huge scaled structures. Additionally, for high performance concrete, various SCMs are replaced to improve its performance from fresh state to hardened state. With the drawback of increased viscosity of the concrete mixture for high performance concrete, low-viscosity typed high range water reducer is the relatively new admixture. Therefore, as a goal of the research, under using various SCMs with wide range of content, the performance of low-viscosity typed high range water reducer was evaluated. Especially, in this research, the influence of low-viscosity typed high range water reducer on rheological properties including plastic viscosity and yield stress were assessed. As a result of the research, it is expected to provide a fundamental information of low -viscosity typed high ranged water reducer on high performance concrete with various conditions of SCMs.

  • PDF

The Effect of Chemical Admixtures on Removal of Scattered Dust

  • Son, Ho Jeong;An, Jung Min;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.594-601
    • /
    • 2013
  • One of the important problems associated with building demolition is the dust generated during the work. The only way to reduce the demolition dust is to use a dust net during water spraying. However, it is difficult to supply the necessary amount of water to remove demolition dust, thus making it difficult to apply this method on a demolition site. This work attempted to find an alternative approach to dust removal by incorporating surfactant and high range AE water reducer in the water being sprayed. Through the experiment, it was found that the addition of surfactant did not contribute to the removal of demolition dust. However, the use of high range AE water reducer showed better performance than spraying plain water, indicating that some amount of demolition dust had been adsorbed on the high range AE water reducer.

A Experimental Study of Mechanical properties in mud flat mortar mixed with High-range Water reducer (고성능감수제를 혼입한 갯벌모르타르의 역학적 특성에 대한 실험적 연구)

  • Lee, Heung Yeol;Kim, Hui Doo;Lee, Ji Sun;Yang, Seong Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.115-116
    • /
    • 2015
  • Since concrete has evolved to the development of the quality and performance there currently being used civil engineering, as the most important material in the construction sector. But the discovery of alternative building materials and indiscriminate use is negligible. So that is the situation facing the shortage of natural aggregate. Accordingly, this study reviewed the mechanical properties by replacing the aggregate through the mud flat of eco-friendly materials and analyze the usability by adding a high-performance water reducer for promoting workability.

  • PDF

Flow and Strength Properties of Cement Mortar Mixed with High Range Water Reducer Containing Carboxylic Acid(II) (카르본산계 고성능 감수제를 첨가한 시멘트 모르타르의 유동 특성(II))

  • 김화중;강인규;권영도;김우성;황재현;김원기;박기청
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.156-163
    • /
    • 1995
  • In the previous study, styrene mdleic dnhydride copolymer(SMA) as synthesized flom styrene and rnale~c dnhydr~de and further redcted with sulfuric acid to obtam water soluble SMA. In thls study, the flow dnd strcngth tests of cement mortar rmxed wth copolymers wele carried out to evaluate the capability of copolymers as high range water reducer for the con crete. It was found from flow exper~ment that the fluidity of cenient mortar rmxed wth sulfonated SMA(SSMAj was larger thdn that mxed ulth amnophenol substituted SSMA (SmSMAj. The decreasing rate of the flow of cement mortar rmxed ulth SSMA and SmSMA was significantly lower than that mixed ulth naphthalene condensate(NSC) The compressslve strength of the hardened cement mortars containing 0.5% copolymers after 28 dys curing was exarmned. 'The compressive strength of hdrdened cement mortar containing SSMA and SmSMA was mcreased up to 31% and 13%, respectively, when omp pared to the plain. As the results, the copolyniers(SSMA and SrnSMA) used in thls study are greatly expected as a good high range water reducers for the concrete.

Flow and Strength Properties of Cement Mortar Mixed with High Range Water Reducer Containing Carboxylic Acid (카르본산계 고성능감수제를 첨가한 시멘트 모르타르의 유동 특성)

  • 김화중;강인규;권영도;김우성;황재현;김원기;박기청
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.142-147
    • /
    • 1995
  • In this study, styrene-maleic anhydride copolymer (SMA) was synthesized from styrene and maleic anhydride and further reacted with sulfuric acid to obtain water-soluble SMA and the flow and strength tests of cement mortar mixed with copolymers were carried out to evaluate the capability of copolymers as high range water reducer for the concrete. It was found from flow experiment that the fluidity of cement mortar mixed with sulfonated SMA (SSMA) was larger than that miced with aminophenol-substituted SSMA (SmSMA). The decreasing rate of the flow of cement mortar mixed with SSMA and SmSMA was decreasing rate of the flow of cement mortar mixed with SSMA and SmSMA was significantly lower than that mixed with naphthalene condensate (NSC). The compressive strength of the hardened cement mortars containing 0.5% copolymers after 28 days curing was examined. The compressive strength of hardened cement mortar containing SSMA and SmSMA was increased up to 32% and 13%, respectively, when compared to the plain. As the results, the copolymers (SSMA and SmSMA) used in this study are greatly expected as a good high range water reducers for the concrete.

  • PDF

Performance Analysis of Cement Paste Including Generic and Low-viscosity Type High Range Water Reducer (저점도형 감수제 및 고성능 감수제의 사용에 따른 시멘트 페이스트 성능 분석)

  • Son, Bae-Geun;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.32-33
    • /
    • 2017
  • In order to improve the flow performance of high performance concrete, use of high performance water reducing agent and low viscosity type water reducing agent is a study of suitable range of use due to side effects. in this study, we aimed at reducing viscosity and yield value using high performance water reducing agent and low viscosity type water reducing agent, and this was evaluated using a rheometer. as a result of analysis of viscosity and yield value, it was found that the high performance water reducing agent has higher reduction effect than the low viscosity type water reducing agent. however, the larger the viscosity lowering effect is, the lower the usable range is, compared to general high performance water reducing agents, and it was found that sufficient consideration for this judgment of appropriate quantity is necessary.

  • PDF

Preparation of High Range Water Reducer Containing Carboxylic Acid and Their Cement Absorptivity(I) (카르본산계 고성능감수제의 제조 및 그들의 시멘트 흡착성(I))

  • 김화중;강인규;김성훈;김우성;권영도
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.175-182
    • /
    • 1995
  • Styrene-Maleic anhydride copolymer (SMA) was prepared by the radical copolmerization of styrene and maleic anhydride using ${\alpha}-{\alpha}'$ azobis(isobutyronitrile) as an initiatrr. SMA was further reacted with m-amino phenol to obtain aminophenol-substituted SMR (mSMA). Sulfonated SMA and mSMA were also prepared by the reaction of copolymers with sulfuric acid The copolyniers were characterized by infrared spectroscopy. It was found from the results of elemental analysis that the substitution degree of aminophenol in the mSMR is 44% and the degree is lowered to 35% after sulfonation. The percentage of copolymers adsorbed on the surface of cement particles was increased with a decrease of added copolymers. While, the arnourit of sulfonated SMA absorbed on the surface of cement particles was larger than that of the sulfonated mSMA The copolymers synthesized in this study are probably expected as a high range water reducer for coiicxte.

Field Application of High Strength Concrete under Cold Weather Conditions (650kgf/$\textrm{cm}^2$ 고강도 콘크리트 한중 시공사례)

  • 정재동;노재호;한정호;조일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.260-265
    • /
    • 1994
  • High strength concrete(65MPa) was used for construction of the bulk cement storage silo by using sliding form. This paper presents mix design, production, quality control and experience with field application of high strength concrete under cold weather conditions. It is shown to be possible to produce high strength concrete of compressive strength of 50~60 MPa by using high-range water reducer to lower w/c ratio with appropriate quality control.

  • PDF

The Mock-up Test for the Hot Weathered High Strength Concrete (고강도 콘크리트의 하절기 적용을 위한 실물모형시험)

  • Shon, Myung-Soo;Kim, Tae-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.442-445
    • /
    • 2004
  • The mock-up test was carried out to solve several problems of the hot weathered high strength concrete. The workability of concrete could be guaranteed by using high range water reducer containing polycarboxylic acid. The compressive strength calculation by rebound value of Schumidt hammer underestimated the actual strength of concrete structure. The temperature of concrete should be lowered by control of raw material temperature and transportation.

  • PDF