• Title/Summary/Keyword: high-pressure extracts

Search Result 123, Processing Time 0.022 seconds

Enhancement of Anticancer Activities from Lithospermum erythrorhizon Extracts by Ultra High Pressure Process (초고압 가공 공정을 통한 지치 추출물의 항암 활성 증진)

  • Seo, Yong-Chang;Choi, Woon-Yong;Kim, Ji-Seon;Cho, Jeong-Sub;Kim, Young-Ock;Kim, Jin-Chul;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.103-110
    • /
    • 2011
  • This study was performed to enhance anticancer activities of Lithospermum erythrorhizon by eluting high amount of shikonin through ultra high pressure process. Extraction yield was increased up to 5~10% by ultra high pressure process, compare to the normal extraction processes such as water solvent extraction, 70% ethyl alcohol solvent extraction. The cytotoxicity of the extracts ($1.0{\mu}g/m{\ell}$) from ultra high pressure process was showed the lowest cytotoxicity 13.4% for human lung cell (HEL299). The anticancer activities showed 80~85% by adding $1.0{\mu}g/m{\ell}$ of the extracts from ultra high pressure process in several cancer cell lines such as AGS, Hep3B, MCF-7 and HeLa cells. Among them, MCF-7 cell of the endocrine system was highest inhibited than other cells. The anticancer activities of the extracts from ultra high pressure extraction process showed 10~15%, which was higher than the extracts from normal extraction processes. From HPLC analysis of the extracts, the contents of shikonin in the extracts from ultra high pressure process was 11.42% (w/w), which was 20% higher than others. This results indicate that ultra high pressure process could increase the extraction yield of shikonin and other contents, which resulted in higher anticancer activities.

Enhancement of Immune Activity of the Extracts from Codonopsis lanceolata by Stepwise Steaming Process and High Pressure Process (증숙 및 초고압 증숙 공정을 통한 더덕의 면역활성 증진)

  • Kim, Nam Young;Chung, Jae Youn;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.134-139
    • /
    • 2014
  • This study was to investigate the improvement of immune activities of the extracts from Codonopsis lanceolata by stepwise steaming process and high pressure process. The phenol contents was $8.742{\mu}g/mg$ which was higher than that from conventional extraction using 70% ethyl alcohol at $80^{\circ}C$ for 24 hours. All of extracts at a concentration of $1.0mg/m{\ell}$ showed relatively low cytotoxicity on human normal kidney cell (HEK293) in range of 16 19%. The immune B and T cell growth was improved by extracts using the steamed and high pressure precess of C. lanceolata up to $180{\times}10^4cells/m{\ell}$ and $96{\times}10^4cells/m{\ell}$, respectively. The extract prepared also greatly increased the secretion of both IL-6 and TNF-${\alpha}$ from the stepwise steamed and high pressure process. This results can conclude that stepwise steamed and high pressure process effectively released active biomaterials which could important role in enhancing immune activity in the body.

Anticancer Activity of Acer mono Wood Extracted by Ultra High Pressure Extraction Process (초고압 추출 공정을 통한 고로쇠 목부 추출물의 항암활성 증진)

  • Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Kang, Ha-Young;Choi, Geun-Pyo;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.3
    • /
    • pp.157-167
    • /
    • 2010
  • We investigated a method to improve anticancer activities of Acer mono wood extracts by ultra high pressure extraction process. The A. mono was extracted by water at $40^{\circ}C$ and 300 MPa for 15 min (High Pressure Extraction, HPE). The extraction yield by ultra high pressure extraction process was 5.42%. The cytotoxicity on human normal lung cell (HEL299) of the extracts from HPE showed 21.54% lower than that from conventional water extraction at $100^{\circ}C$ in adding the maximum concentration of 1.0 mg/$m{\ell}$. Ultra high pressure extracts process for 15 minutes extracts (HPE15) showed more potent scavenging effect than the control, BHA. On SOD-like test, the HPE15 showed highest activity as 32.4% at 1.0 mg/$m{\ell}$ concentration. Human stomach adenocarcinoma, liver adenocarcinoma, breast adenocarcinoma and lung adenocarcinoma cell growth were inhibited up to about 67~79%, in adding 1.0 mg/$m{\ell}$ of extracts from HPE. HPE was 20~25% higher than conventional water extraction. It was interesting that, among several cancer cell lines (stomach adenocarcinoma, liver adenocarcinoma), the growth of digestive related cancer cells were most effectively inhibited as about 75~79%. On in vivo experiment using ICR mice, the variation of body weight of mice group treated A. mono wood extracts from HPE of 100 mg/kg/day concentration was very lower than control and other group. The survival times of group treated this extracts was 61.96% longer than that of the control group and this extracts showed the lower tumor weight, which were 10.49 g than positive control as 16.17 g. Based on these results, we could tell that the HPE wood extracts of A. mono had higher anticancer activity than conventional water extraction. The results of HPE showed obvious advantages in higher efficiency, shorter extraction time, at lower energy costs.

Heat and High-Pressure Treatments on In Vitro Digestibility and Allergenicity of Beef Extract

  • Han, Gi-Dong
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.523-528
    • /
    • 2006
  • The digestibility of heat- or high-pres sure-treated beef extracts was evaluated with an in vitro simulated gastric digestion model and each sample also underwent immune assay to detect its antigenicity with the sera of beef allergic patients. Heat treatment of the beef extracts considerably decreased their digestibility, whereas high-pressure treatment at 200 MPa improved their digestibility compared with the control, but the difference was not significant. The digestibility of the high pressure-treated beef extract was generally higher than that of the heat-treated samples. Depending on the degree of digestion, the degree of antigenicity of the main beef allergens decreased. On the basis of these results, we hypothesized that the allergenicity of beef could be eliminated if the allergenic proteins are sufficiently digested in the digestive organ, leading to the suggestion that the digestibility of allergenic proteins must be improved in food processing. In conclusion, high-pressure processing is a more acceptable food processing technique for beef considering its digestibility.

Enhancement of Anticancer Activities of Ephedra sinica, Angelica gigas by Ultra High Pressure Extraction (초고압 추출 처리에 의한 마황과 당귀의 항암 활성 증진)

  • Jeong, Hyang-Suk;Han, Jae-Gun;Ha, Ji-Hye;Kim, Young;Oh, Sung-Ho;Kim, Seoung-Seop;Jeong, Myoung-Hoon;Choi, Geun-Pyo;Park, Uk-Yeon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • This study was performed to enhance anticancer activities of E. sinica, and A. gigas by ultra high pressure extraction process. The cytotoxicity of E. sinica and A. gigas on human kidney cell (HEK293) was as low as 24.94% and 25.3% in adding 1.0 $mg/m{\ell}$ of the sample extracted at 500 Mpa for 15 minute. Generally, the inhibition of cancer cell growth on A549 and MCF-7 was increased over 20% in the ultra high pressure samples, compared to the conventional extraction process. Under the extracts from ultra high pressure process showed not only the strongest anticancer activities, but also had better stability than normal extracts. It was also found that the extracts of A. gigas reduced the hypertrophy of the internal organs, such as adrenal and spleen caused stresses in several mouse models.

Enhancement of Skin Immune Activities of Spirulina maxima by High Pressure Extraction Process (Spirulina maxima 초고압 추출물의 피부 면역 활성 증진)

  • Oh, Sung-Ho;Kang, Do-Hyung;Choi, Woon-Yong;Seo, Yong-Chang;Heo, Soo-Jin;Abu, Affan Md.;Jeong, Kyung-Hwan;Lee, Hyeon-Yong
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • A marine alga, Spirulina maxima, was extracted under high pressure and low temperature conditions at 500 MPa and $60^{\circ}C$ for 5 and 10 min. A high pressure of 500 MPa was applied to improve process yields because of low temperature extraction. This method resulted in highest higher extraction yield of 26.1% (w/w) in comparison to those results obtained from conventional extraction methods which produced a yield of 17.6% (w/w) from water. The extracts from this process also showed 19% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. The crude extract significantly reduced the production of Prostaglandin $E_2$ ($PGE_2$) from CCD-986sk cells and increased nitric oxide production by macrophages. These higher activities of enhancing skin immune functions were found to have high antioxidant extract properties, like a 98% increase in DPPH radical scavenging activity. The extracts from the high pressure process showed a higher elution of active components than other processes and generated new compounds based on HPLC analysis. This clearly indicates that the extracts from high pressure and low temperature conditions have higher skin immune activation properties that have not been previously reported.

Comparison of Immuno-Modulatory Regulatory Activities of Rubus coreanus Miquel by Ultra High Pressure Extracts Process (초고압 공정에 의한 복분자의 면역조절효능 비교)

  • Kwon, Min-Chul;Kim, Cheol-Hee;Na, Chun-Soo;Kwak, Hyeong-Geun;Kim, Jin-Chul;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.398-404
    • /
    • 2007
  • This study was performed to investigate the enhancement of anticancer activities and immuno modulatary activities from R. coreanus. by ultra high pressure extracts process. The cytotoxicity on human kidney cell (HEK293) was showed below 19.5% in adding 1.0 $mg/m{\ell}$ concentration. The anticancer activity was increased over 10% by high pressure processing in AGS and A549 cells. The immune cell growth using human immune B and T cells was improved by the high pressure extracts of Rubus coreanus in adding 1.0 $mg/m{\ell}$ concentration. The secretion of two kinds of cytokine, the IL-6 and $TNF-{\alpha}$ from human immune B and T cells were also enhanced in adding extracts by high pressure process of R. coreanus. The ultra high pressure extraction technique showed high efficiency in extracting of bioactive compound. The ultra high pressure technique could be used combined with other technique to improve the extracting rate and extracting efficiency.

Enhancement of Whitening Effects of Lithospermum erythrorhizon Extracts by Ultra High Pressure (지치 초고압 추출물의 미백활성 증진)

  • Kim, Ji-Seon;Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Ma, Choong-Je;Ahn, Ju-Hee;Kim, Nam-Seong;Hwang, Baik;Cho, Jeong-Sub;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • In this study, whitening activity of Lithospermum erythrorhizon extracts were investigated according to several extraction processes: water extraction at $100^{\circ}C$ (WE100) and $60^{\circ}C$ (WE60), 70% ethyl alcohol extraction (EE) and ultra high pressure extraction (HPE) at 500 MPa for 30 minutes at $60^{\circ}C$. The extracts from ultra high pressure extraction showed the highest tyrosinase inhibition and melanogenesis inhibition activities as 52% and 79.5%, respectively, in adding $1mg/m{\ell}$ than others extraction processes. HPE extracts also showed the strong reducing power as 3.19 that absorbance at 450 mm. The contents of polyphenol in WE100, we measured as $10.1{\mu}g/m{\ell}$ in adding $1mg/m{\ell}$. Extracts have a high total flavonoid contents by HPE as $4.1{\mu}g/m{\ell}$ at $1mg/m{\ell}$. We can conclude that better whitening activity of extracts from high pressure extraction was due to high antioxidant activities which could be extracted by higher polyphenol and flavonoid contents in HPE than others.

Effects of Three Korean White Ginseng Extracts on Atopic Dermatitis-Related Cytokines, and Antioxidant and Anti-aging Activities (백삼 추출물이 아토피 피부염 관련 사이토카인 분비 및 항산화, 항노화에 미치는 영향)

  • Hong, Chang-Eui;Lyu, Su-Yun
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.2
    • /
    • pp.102-111
    • /
    • 2019
  • Inflammation that is considered to be mainly related to pathogenesis of atopic dermatitis (AD) is the biological response of a host to stimuli, such as cellular injury or infection. In this study, we investigated the anti-inflammatory and anti-oxidative activities of white ginseng roots by ultra high pressure extraction (Gin-UHP), fermentation followed by ultra high pressure extraction (Gin-UHPF), and polyol extraction (Gin-POL). As a result, ginseng extracts were able to decrease the secretion of pro-inflammatory cytokines (interleukin-8 and tumor necrosis factor-alpha) and immunoglobulin E. Also, Gin-POL had the highest DPPH radical scavenging activity and when we compared the SOD-like activity, Gin-UHP had the highest. Moreover, we looked into the effect of these ginseng extracts on anti-aging to show the possible usefulness as a raw material of cosmetics. As a result, ginseng extracts were able to reduce the production of melanin, and inhibit the tyrosinase and elastase activities in a dose-dependent manner. The extracts also decreased the expression of MMP-1 and had a significant hyaluronidase inhibitory activity. Taken together, these results demonstrate that ginseng extracts may have an improvement effect on AD by using its anti-inflammatory and antioxidant properties.

Toxicity Reduction and Improvement of Anticancer Activities from Rhodiola sachalinensis A. Bor by Ultra High Pressure Extracts Process (초고압 공정에 의한 홍경천의 독성 감소 및 항암활성 증진)

  • Kim, Cheol-Hee;Kwon, Min-Chul;Qadir, Syed Abdul;Hwang, Baik;Nam, Jong-Hyeon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2007
  • This study was performed to investigate the reduction of toxicity and improvement of anticancer activities from R. sachalinensis by ultra high pressure extracts process. The cytotoxicity on human kidney cell (HEK293) and human lung cell (HEL299) was showed below 20.4% and 21.6% as compare to normal extracts in adding 1.0 $mg/m{\ell}$ concentration. This showed that toxic materials through ultra high pressure processing is broken or degraded. Because bond such as hydrogen bond, electrostatic bond, Van der waals bond, the hydrophobic bond, can be broken by high pressure. The anticancer activity was also increased in over 7% by high pressure processing in A549, AGS, MCF-7 and Hep3B cells. The result showed that extraction by high pressure have low cytotoxicity and high anticancer activity. So, the high pressure extraction technology can play an important role in eruption of new material with high biological activity.