• Title/Summary/Keyword: high-intensity ultrasound

Search Result 94, Processing Time 0.027 seconds

Extracorporeal High Intensity Focused Ultrasound Therapy (체외강력집속초음파치료)

  • Han, Sang-Suk
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • Local treatment for tumors has developed from extended radical surgery to function preserving surgery on the basis of modern biology. With the development of minimally invasive technique, it changed to be minimal-invasive surgery. And nowadays technical revolution made non-invasive surgery possible with appearance of several kinds of non-surgical knives such as gamma knife, cyber knife, and HIFU (high intensity focused ultrasound) knife. In this article, history, HIFU machine and treatment procedure, histological change and its mechanism, clinical applications, advantage, disadvantage, and future prospect of extracorporeal high intensity focused ultrasound therapy using HIFU knife will be reviewed.

  • PDF

A Study on the Development of High-intensity focused Ultrasound Device for the Beauty Treatment Health Care (미용 치료 헬스케어를 위한 고강도 집속 초음파 장치 개발 연구)

  • Lee, Woo-Cheol;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1259-1264
    • /
    • 2016
  • Ultrasonic therapy has received great attention in the field of cosmetics related to the treatment of skin thickening because of its fast recovery and safety. In this study, an output circuit of a high intensity focused ultrasound system was developed for the treatment of beauty. To verify the applicability of the high intensity focused ultrasound system to the cosmetic treatment field, we measured and analyzed the 3D ultrasound intensity energy using a hydrophone. And high-intensity focused ultrasound devices were found to be useful for cosmetic treatment.

A Study on the Safety and Performance Test Guideline of Low Intensity Therapeutic Ultrasound Device (저강도 초음파 치료기기의 안전성 및 성능평가 가이드라인 수립을 위한 연구)

  • Kim, Ju-Young;Kim, Jae-Young;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • In this study, we suggested the performance and safety testing guideline for low intensity pulsed ultrasound (LIPUS) represented by the ultrasound fracture treatment device and cartilage treatment device and low intensity focused ultrasound (LIFU) represented by ultrasonic face lifting device. For these study, the international standards and management regulations of Korea, Japan and United State were analyzed. And the usefulness and applicability were evaluated by testing with commercial equipment and reflecting the views of the industry and experts. As a result of this study, the safety and performance test guidelines for low intensity therapeutic ultrasound device were proposed by presenting the 10 items for LIPUS and 12 items for LIFU. The suggested guidelines are considered a high utilization in the domestic testing and approval authorities. And they are also thought to be useful to new technology development.

Acoustic Characteristics of High Intensity Focused Ultrasound for Necrosis of CTO (CTO 괴사를 위한 고강도 집속 초음파의 음향학적 특성)

  • Park, Chan Hee;Jeong, Sang Hwa
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.481-488
    • /
    • 2015
  • It is difficult to see a therapeutic effect from cardiovascular disease treatment methods in the case of a hardened chronic total occlusion (CTO), owing to the calcification of the deposition materials. However, lesion cells, such as CTOs, can be selectively necrotized without affecting the normal tissue using high-intensity ultrasound focused on one point. In this study, a phantom CTO was necrotized by a high-intensity focused ultrasound (HIFU) energy system, and the acoustic characteristics in the focal region were analyzed. An experimental HIFU device was constructed to discover the appropriate conditions for the necrosis of a phantom CTO. The transfer characteristics of the ultrasound changed in the focal region by the density difference of the phantom CTO. These changes were acoustically analyzed to choose the available frequency band for each density. On-off temperature control in the focal region was applied to prevent rapid temperature rises, which would otherwise affect normal tissue.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Special Issue for Biomedical Ultrasound: Towards Further Advances in Fundamentals and Applications by Comprehensive Reviews

  • Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.107-110
    • /
    • 2010
  • In this paper, the rationale and contents of the special issue of the Journal of the Acoustical Society of Korea regarding comprehensive reviews on past, present and future of biomedical ultrasound are described. Brief descriptions of invited articles are given, and efforts by all contributing authors are gratefully acknowledged.

High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends (HIFU: 현황 및 기술적 동향)

  • Seo, Jong-Bum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.55-63
    • /
    • 2010
  • High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung;Fomenko, Anton;Lozano, Andres M.
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.1
    • /
    • pp.10-26
    • /
    • 2019
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young;Chang, Jin Woo
    • Journal of Korean Medical Science
    • /
    • v.33 no.44
    • /
    • pp.279.1-279.16
    • /
    • 2018
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.