• Title/Summary/Keyword: high-frequency core

Search Result 479, Processing Time 0.024 seconds

A Study of the Low Noise Transformer by Avoiding the Structural Resonance (구조 공진회피에 의한 변압기 소음저감)

  • Choi, Won-Ho;Kim, Jin;Suk, Ho-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.520-526
    • /
    • 2005
  • Demands for the noise reduction of a transformer has been becoming an common issue because it has been used mainly at the residence area such as an apartment complex. This paper shows 2 trouble shooting examples that high noise sources were found out structural resonance of a transformer by 120Hz exciting frequency caused from magnetostrictive vibration of core. This paper presents that vibration data are very important to find noise source and how to avoid natural frequency of core and tank wall

A study on the improvement of sound absorption coefficient of an honeycomb panel by the core resonance (코어공명을 이용한 허니콤패널의 흡음율 개선에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • Honeycomb panel has a constructive advantage because it is constructed with a honeycomb core, so it has relatively higher strength ratio to weight. Therefore honeycomb panel has been used as the light weight panels in the high-speed railway technology and high-speed ship like as cruise yachts. Also it has been used in the aircraft and aerospace industry as a structural panel because light weight structure is indispensible in that field of industry. Recently, the honeycomb panel is embossed in the viewpoints of high oil prices as the lightweight panel of the transport machine, however the sound insulation capacity of the honeycomb panel is poorer than those of uniform and another sandwich panels. In this paper a method to improving the sound absorption coefficient of a honeycomb panel Is studied by using the Helmholtz resonator. The sound absorption coefficients for some kinds of honeycomb cores are demonstrated by the normal incident absorption coefficient method.

  • PDF

A Design on High Frequency CMOS VCO for UWB Applications (UWB 응용을 위한 고주파 CMOS VCO 설계 및 제작)

  • Park, Bong-Hyuk;Lee, Seung-Sik;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.213-218
    • /
    • 2007
  • In this paper, we propose the design and fabrication on high frequency CMOS VCO for DS-UWB(Direct-Sequence Ultra-WideBand) applications using 0.18 ${\mu}m$ process. The complementary cross-coupled LC oscillator architecture which is composed of PMOS, NMOS symmetrically, is designed for improving the phase noise characteristic. The resistor is used instead of current source that reduce the 1/f noise of current source. The high-speed buffer is needed for measuring the output characteristic of VCO using spectrum analyzer, therefore the high-speed inverter buffer is designed with VCO. A fabricated core VCO size is $340{\mu}m{\times}535{\mu}m$. The VCO is tunable between 7.09 and 7.52 GHz and has a phase noise lower than -107 dBc/Hz at 1-MHz offset over entire tuning range. The measured harmonic suppression is 32 dB. The VCO core circuit draws 2.0 mA from a 1.8 V supply.

Bonding Technology for PZT and Connection board using a High Frequency Heating Machine. (고주파 가열기를 이용한 PZT와 연결기판의 접합기술)

  • Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • In this study, a new technology to bond the PZT with connection board, which is a core technology for the fabrication of medical micro high frequency sensors, was developed. Two technologies were adopted. One is bonding of In using thermal heating, he other is bonding of Pb using a high frequency heating machine. In case of thermal eating, bonding was failed because of the contaminations of In surface. But, when using high frequency healing machine, we developed good bonding characteristics at various experimental conditions and thickness of the electrode material.

  • PDF

Operation Frequency Dependence of Output of Orthogonal Fluxgate Sensor Fabricated with Ferrite Core (페라이트 코어를 이용하여 제작한 직교형 플럭스게이트 센서의 감도에 미치는 구동주파수의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.200-203
    • /
    • 2012
  • In this study, we have investigated that the operation frequency dependences of the output properties of the orthogonal fluxgate sensor which was fabricated with a ferrite core. An orthogonal fluxgate sensor should be operated in as high as possible frequency to enhance its sensitivity in the case of small sized sensor, because sensitivity of the sensor is proportional to cross section area, winding number and operation frequency. In this study, we investigated the correspondence of the frequency dependence of output and the reactance (inductance and capacitance) of pickup coil and cable. Experimental results represented that we could obtain maximum output (= sensitivity) at optimal frequency which is near LC resonance frequency of the pickup coil and cable.

Magnetic Loss of Mn-Zn Ferrite Cores Used for SMPS (SMPS용 Mn-Zn 페라이트 코어의 자기손실 특성)

  • 권태석;김성수
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.149-153
    • /
    • 1999
  • Frequency and temperature dependence of magnetic loss has been investigated in Mn-Zn ferrites containing the sesistive temary compounds of $SiO_2-CaO-V_2O_5$. The Mn-Zn ferrite with the composition of $MnO:ZnO:Fe_2O_3=36:11:53$(by mol %) are prepared by self-propagating high-temperature synthesis. From the results of frequency dependence of core loss, it has been found that the hysteresis loss is dominant at low frequency and the eddy current loss becomes more dominant as the frequency increases. With the addition of resistive compound, the frequency dependence of core loss, it has been found that the hysteresis loss is dominant at low frequency and the eddy current loss becomes more dominant as the frequency increases. With the addition of resistive compound, the frequency region where the hysteresis loss is dominant becomes wide. The core-loss minimum occurs at about 4$0^{\circ}C$ in the specimens with the additive because of the reduction in eddy current loss.

  • PDF

A Study of High-Quality Factor Solenoid-Type RF Chip Inductor Utilizing Amorphous $Al_2O_3$ Core Material (비정질 $Al_2O_3$ 코아 재료를 이용한 Solenoid 형태의 고품질 RF chip 인덕터에 관한 연구)

  • Lee, Jae-Wook;Jung, Young-Chang;Yun, Eui-Jung;Hong, Chol-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.34-42
    • /
    • 2000
  • Recently, there is a growing need to develope small-size RF chip inductors operating to GHz to realize high-performance, micro-fabricated wireless communication products. For the development of high-performance RF chip inductors, however, the ferrite-based chip inductors can not be used above 300MHz due to the limitation of the permeability of this material. In this work, small-size, high-performance RF chip inductors utilizing amorphous $Al_2O_3$ core material were investigated. Copper (Cu) with 40${\mu}m$ diameter was used as the coils and the chip inductor size fabricated in this work is $2.1mm{\times}1.5mm{\times}1.0mm$. The external current source was applied after bonding Cu coil leads to gold pads electro-plated on the bottom edges of a core material. The composition of core materials was measured using a EDX. High frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The developed inductors have the self-resonant frequency (SRF) of 1 to 3.5 GHz and exhibit L of 22 to 150 nH. The L of the inductors decreases with increasing the SRF. The Z of the inductors has the maximum value at the SRF and the inductors have the quality factor of 70 to 97 in the frequency range of 500 MHz to 1.5 GHz.

  • PDF

ZCS Forward DC-DC Converter using PCB Transformer and Inductor (PCB 변압기 및 인덕터를 이용한 ZVA Forward DC-DC 컨버터)

  • 안태영
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.159-162
    • /
    • 2000
  • In his paper the principle of using coreless printed circuit board (PCB) based transformer in 2.3MHz, 12W class ZVS Forward DC-DC converter has been successfully demonstrated. With no core loss coreless PCB transformer and inductor are found to have favorable characteristics at high frequency operations. The maximum power conversion efficiency is 80% Even for high operating frequency an efficiency greater than 70% can be obtained with under 0.7% regulation error.

  • PDF

100W On-Board Power Supply Using Flat Transformer (Flat Transformer를 이용한 100W급 On-Board Power Supply)

  • 황치면;송두익;조정구;정창용;홍승대;하태복
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.577-580
    • /
    • 1999
  • High power density on-board power supply is implemented by using flat transformer. In the high frequency switching converters, large leakage inductance increases the switching stress and duty cycle loss, which sometimes limits maximum switching frequency. The flat transformer is designed by using special core structure, which has very low profile and low temperature rise since the thermal loading is spread evenly over a larger area. 100W, 3.3V output on board supply is built and tested and 50.7W/$\textrm{inch}^{3}$ power density is achieved.

  • PDF

Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center (소형 태핑센터 주축의 열특성 및 주파수 분석)

  • Choi, Dae-Bong;Kim, Soo-Tae;Ro, Seung-Kook;Cho, Hyun-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.