• Title/Summary/Keyword: high-frequency component

Search Result 649, Processing Time 0.025 seconds

Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes (비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

An Architecture-based Multi-level Self-Adaptive Monitoring Method for Software Fault Detection (소프트웨어 오류 탐지를 위한 아키텍처 기반의 다계층적 자가적응형 모니터링 방법)

  • Youn, Hyun-Ji;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.568-572
    • /
    • 2010
  • Self-healing is one of the techniques that assure dependability of mission-critical system. Self-healing consists of fault detection and fault recovery and fault detection is important first step that enables fault recovery but it causes overhead. We can detect fault based on model, the detection tasks that notify system's behavior and compare normal behavior model and system's behavior are heavy jobs. In this paper, we propose architecture-based multi-level self-adaptive monitoring method that complements model-based fault detection. The priority of fault detection per component is different in the software architecture. Because the seriousness and the frequency of fault per component are different. If the monitor is adapted to intensive to the component that has high priority of monitoring and loose to the component that has low priority of monitoring, the overhead can be decreased and the efficiency can be maintained. Because the environmental changes of software and the architectural changes bring the changes at the priority of fault detection, the monitor learns the changes of fault frequency and that is adapted to intensive to the component that has high priority of fault detection.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

Analysis of Acoustic Signals Produced by Corona and Series-arc Discharges (코로나와 직렬아크 방전에 의해 발생한 음향신호의 분석)

  • Jo, Hyang-Eun;Jin, Chang-Hwan;Park, Dae-Won;Kil, Gyung-Suk;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.147-152
    • /
    • 2012
  • This paper dealt with the frequency component analysis of acoustic signals produced by corona and series-arc discharges as a diagnostic technique for closed-switchboards. Corona and series-arc discharge were simulated by a needle-plane electrode and an arc generator specified in UL1699, respectively. Acoustic signal was detected by a wideband acoustic sensor with a frequency bandwidth of 4 Hz~100 kHz (-3 dB). We analyzed frequency spectrums of the acoustic signals detected in various discharge conditions. The results showed that acoustic signals mainly exist in ranges from 30 kHz to 60 kHz. From the experimental results, an acoustic detection system which consists of a constant current power supply (CCP), a low noise amplifier (LNA) and a band pass filter was designed and fabricated. The CCP separates the signal component from the DC source of acoustic sensor, and the LNA has a gain of 40 dB in ranges of 280 Hz~320 kHz. The high and the low cut-off frequency are 30 kHz and 60 kHz, respectively. We could detect corona and series-arc discharges without any interference by the acoustic detection system, and the best frequency is considered in ranges of 30 kHz~60 kHz.

Characteristics Analysis of Class E Frequency Multiplier using FET Switch Model (FET 스위치 모델을 이용한 E급 주파수 체배기 특성 해석)

  • Joo, Jae-Hyun;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.596-601
    • /
    • 2011
  • This paper has presented research results for the switching mode class E frequency multiplier that has simple circuit structure and high efficiency. Frequency multiplication is coming from the nonlinearity of the active component, and this paper models the FET active component as a simple switch and some parasitics to analyze the characteristics. The matching component parameters for the class E frequency doubler have been derived with modeling the FET as a input controlled switch and some parasitics. A circuit simulator, ADS, is used to simulate the output voltage and current waveform and efficiency with the variation of the parasitic values. With 2.9GHz input and 2V bias, the drain efficiency has been decreased from 98% to 28% with changing the parasitic capacitance from 0pF to 1pF at 5.8GHz output, which shows that the parasitic capacitance CP has the most significant effect on the efficiency among the parasitics of FET.

A Quality Improvement of MP3-Coded Audios Using Bandwidth Extension (대역 확장을 통한 MP3 오디오의 음질 향상)

  • Heo, So-Young;Kim, Rin-Chul
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.744-751
    • /
    • 2008
  • In this paper, we investigate methods to enhance the perceptual quality of MP3-coded audios. Based on the high frequency reconstruction method by Liu, in the proposed method, we determine adaptively the starting point of high frequency reconstruction. We also present an improved linear estimation method. For high frequency component generation, we compare two methods. One is a replication of low-frequency components and the other is an insertion of additive white Gaussian noise signals. Through subjective tests, we shall show that the proposed method can improve the perceptual quality of MP3-coded audio.

Power Loss Calculation of High Frequency Transformers

  • Choi Geun-Soo;Yoon Shin-Yong;Baek Soo-Hyun;Kim Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.338-342
    • /
    • 2006
  • This paper analyzed the power loss of transformers considering the magnetic component. For this, each winding strategy and the effect of air gap between the ferrite core have been an important variable for optimal parameter calculation. Inductors are very well known design rules to devise, but the performance of the flyback converter as a function of transformer winding strategy has not been fully developed. The transformer analysis tool used was PExpert. The influence of the insulator thickness, effect of the air gap, how the window height and variation of the capacitive value effects the coil and insulator materials are some of parameters that have been analyzed in this work. The parameter analysis is calculated to a high frequency of 48[kHz]. Therefore, the final goal of this paper was to calculate and adjust the parameters according to the method of winding array and air gap minimizing the power loss.

Performance Characteristics of High Frequency Jetting Dispenser Featuring Piezoactuator (압전작동기를 이용한 고주파수 젯팅 디스펜서의 성능 특성)

  • Yun, Bo-Young;Nguyen, Quoc Hung;Hong, Seung-Min;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.595-600
    • /
    • 2007
  • This paper presents a new jetting dispenser driven by a piezoelectric actuator at high operating frequency to provide very small dispensing dot size of adhesive in modern semiconductor packaging processes. After describing the mechanism and operational principle of the dispenser, a mathematical model of the structured system is derived by considering behavior of each component such as piezostack and dispensing needle. In the fluid modeling, a lumped parameter method is applied to model the adhesive whose rheological property is expressed by Bingham model. The governing equations are then derived by integrating the structural model with the fluid model. Based on the proposed model, dispensing performances such as dispensing amount are investigated with respect to various input trajectories.

  • PDF

Review on Magnetic Components: Design & Consideration in VHF Circuit Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.180-187
    • /
    • 2009
  • When converters operate in megahertz range, the passive components and magnetic devices generate high losses. However, the eddy current issues and choices of magnetic cores significantly affect on the design stage. Apart from that, the components' reduction, miniaturization technique and frequency scaling are required as well as improvement in thermal capability, integration technique, circuit topologies and PCB layout optimization. In transformer design, the winding and core losses give great attention to the design stage. From simulation work, it is found that E-25066 material manufactured by AVX could be the most suitable core for high frequency transformer design. By employing planar geometry topology, the material can generate significant power loss savings of more than 67% compared to other materials studied in this work. Furthermore, young researchers can use this information to develop new approaches based on concepts, issues and methodology in the design of magnetic components for high frequency applications.