• 제목/요약/키워드: high-energy density science

검색결과 692건 처리시간 0.025초

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

A Model Calculation of Solar Microwave Burst Structure

  • Choi, Yong-Seok
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1995년도 한국우주과학회보 제4권1호
    • /
    • pp.21-21
    • /
    • 1995
  • The structures of 17GHz microwave burst for bipolar sunspots have investigated. which included the effects of the projected shapes of radio sources as they traverse across the solar disk using a magnetic loop employing a model of solenoid coils. An ensemble of high-energy electrons confined in the loop be assumed. The projected brightnesls distributions of gyrosynchrotron emission in x- and o-modes are computed and converted into total intensity and circular polarization difference at 17GHz for various heliocentric distances using numerical integration of the transfer equation along the line of sight. The results of computations at 17GHz for optical thin case will be presented. and the effects of the orientation of the loop will be discussed in detail, as well as the effect of size, position, Structure, and polarization of the emission. Also the results of the various physical P8lrameters such as the strength of magnetic field. high and low energy cut-off of accelerated electrons. spectral index and density of electrons will be preslmted. After comparing the results of model calculation with observations. we found that the observations can be well explained in terms of a loop model and its projection effect.effect.

  • PDF

금속산화물 전극을 사용한 고 에너지밀도 하이브리드 커패시터 특성 (Characteristics of high energy density hybrid capacitor using metal oxide electrode)

  • 윤홍진;신윤성;이종대
    • 한국응용과학기술학회지
    • /
    • 제28권3호
    • /
    • pp.329-334
    • /
    • 2011
  • The electrochemical performances of an asymmetric hybrid capacitor were investigated using $LiFePO_4$ as the positive electrode and active carbon fibers(ACF) as the negative electrode. The electrochemical behaviors of a nonaqueous hybrid capacitor were characterized by constant current charge/discharge test. The specific capacitance using $LiFePO_4$/ACF electrode turned out to be $0.87F/cm^2$ and the unit cell showed excellent cycling performance. This hybrid capacitor was able to deliver a specific energy as high as 178 Wh/kg at a specific power of 1,068 W/kg.

방사선(放射線) 차폐물질(遮蔽物質)에서 발생(發生)하는 산란선(散亂線)의 측정(測定) (Some Measurements of Scattered Radiation from Various Radiation Shielding Materials)

  • 김창균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제4권1호
    • /
    • pp.15-22
    • /
    • 1981
  • Half value layer(radiation energy) of $90^{\circ}$ scattered radiation from various radiation shielding materials was measured at 1 m distance from the central ray of the primary beam. Scattered radiation was measured from 100 to 200 kVp for 0-2.0mm Cu+1.0mm Al added filter in the primary beam for a deep therapeutic unit, the obtained results were as follows: 1. The ratio of scattered radiation to primary radiation was increased by using lighter filter. 2. The ratio of scattered radiation to primary radiation was decreased by using heavier filter. 3. The ratio of scattered radiation to primary radiation was independent of tube voltage. 4. The scattered radiation of high energy was produced, when the effective atomic number and density of shielding material were high.

  • PDF

GATE 시뮬레이션을 이용한 I-131 영상의 산란 및 격벽통과 보정방법 연구 (Investigation of Scatter and Septal Penetration in I-131 Imaging Using GATE Simulation)

  • 정지영;김희중;유아람;조효민;이창래;박혜숙
    • 한국의학물리학회지:의학물리
    • /
    • 제20권2호
    • /
    • pp.72-79
    • /
    • 2009
  • I-131은 갑상선에 주로 집적되어 갑상선의 기능을 평가하는데 활용됨은 물론 높은 에너지의 베타선을 방출함으로써 암의 치료에도 널리 사용되고 있는 방사선 핵종이다. 그러나 I-131은 다양한 에너지의 감마선을 방출함으로써 핵의학 영상의 정량화가 어렵다. 특히 고에너지 영역의 감마선에 의한 격벽투과(septal penetration)와 산란선은 핵의학 진단영상에 악 영향을 미치게 된다. 본 연구에서는 격벽투과가 영상에 미치는 영향과 I-131의 산란보정 방법을 몬테카를로 시뮬레이션을 활용하여 알아보고자 하였다. 본 실험을 위하여 임상에서 사용되고 있는 범용성 고에너지 조준기를 장착한 핵의학 영상 기기인 FORTE 시스템(Philips, Netherlands)에 대해 모사하였다. 격벽투과가 영상에 미치는 영향을 알아보기 위하여 고에너지 조준기의 격벽을 두 가지 종류로 모사하여 보았다. 한 종류는 실제로 사용하고 있는 납으로 격벽을 모사하였으며, 다른 한 종류는 높은 에너지의 감마선이 투과할 수 없는 밀도와 원자번호가 아주 높은 임의의 물질로 구성하여 모사하였다. 각 각의 조준기를 통해 물팬텀안의 I-131 선 선원의 영상을 획득한 결과 납 격벽에서 획득한 선 선원의 반치폭 (Full Width at Half with Maximum, FWHM)과 십치폭(Full width at Tenth with Maximum, FWTM)은 각 각 41.2 mm, 206.5 mm였으며, 높은 에너지의 감마선이 투과할 수 없는 임의의 물질로 만든 격벽의 조준기에서는 반치폭과 십치폭이 각 각 27.3 mm, 47.6 mm로 측정되었다. 이는 고에너지의 감마선에 의한 격벽투과가 핵의학 영상의 선예도를 나쁘게 한다는 것을 알 수 있다. 또한 I-131을 이용한 핵의학 영상의 산란보정을 위하여 물 팬텀 속의 점 선원을 모사하고 영상을 획득하였다. 산란보정 방법으로는 삼중광봉우리창(Triple Energy Window method, TEW)을 이용하여 획득 영상 내의 산란선을 유추하는 방법을 사용하였다. 그러나 이러한 방법은 중심에너지 창의 범위에 따라 유추된 산란선의 양에 영향이 있으므로 더 정확한 산란선 유추를 위해 확장된 삼중광봉우리창(Extended Triple energy Window method, ETEW)을 적용, 기존의 방법과 비교하였다. 실험 결과 시뮬레이션의 데이터 분류를 통한 산란선으로만 획득된 점 선원 영상과 TEW와 ETEW 방법을 통해 유추된 산란선 영상결과, ETEW 방법으로 산란선을 유추한 방법이 기존의 TEW 방법보다 더 정확함을 알 수가 있었다. 본 연구는 시뮬레이션을 통한 I-131의 특성을 평가함으로써 I-131을 이용한 동위원소 치료 및 GATE 프로그램 연구의 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

Lithium/Sulfur Secondary Batteries: A Review

  • Zhao, Xiaohui;Cheruvally, Gouri;Kim, Changhyeon;Cho, Kwon-Koo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.97-114
    • /
    • 2016
  • Lithium batteries based on elemental sulfur as the cathode-active material capture great attraction due to the high theoretical capacity, easy availability, low cost and non-toxicity of sulfur. Although lithium/sulfur (Li/S) primary cells were known much earlier, the interest in developing Li/S secondary batteries that can deliver high energy and high power was actively pursued since early 1990’s. A lot of technical challenges including the low conductivity of sulfur, dissolution of sulfur-reduction products in the electrolyte leading to their migration away from the cathode, and deposition of solid reaction products on cathode matrix had to be tackled to realize a high and stable performance from rechargeable Li/S cells. This article presents briefly an overview of the studies pertaining to the different aspects of Li/S batteries including those that deal with the sulfur electrode, electrolytes, lithium anode and configuration of the batteries.

Space Physics Sensor on KOMPSAT-1

  • Min, Kyoung-Wook;Choi, Young-Wan;Shin, Young-Hoon;Lee, Jae-Jin;Lee, Dae-Hee;Kim, Jhoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.355-360
    • /
    • 1998
  • A small package of plasma instruments, Space Physics Sensor, will monitor the space environment and its effects on microelectronics in the low altitude region as it operates on board the KOMPSAT-1 from 1999 over the maximum of the solar cycle 23. The Space Physics Sensor (SPS) consists of two parts: the Ionospheric Measurement Sensor (IMS) and the High Energy Particle Detector (HEPD). IMS will make in situ Measurements of the thermal electron density and temperature, and is expected to provide a global map of the thermal electron characteristics and the variability according to the solar and geomagnetic activity in the high altitude ionosphere of the KOMPSAT-t orbit. HEPD will measure the fluxes of high energy protons and electrons, monitor the single event upsets caused by these energetic charged particles, and give the information of the total radiation dose received by the spacecraft. The continuous operation of these sensors, along with the ground measurements such as incoherent scatter radars, digital ionosondes and other spacecraft measurements, will enhance our understanding of this important region of practical use for the low earth orbit satellites.

  • PDF

Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

  • Kim, Byung-Woo;Chung, Hae-Geun;Min, Byoung-Koun;Kim, Hong-Gon;Kim, Woong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3697-3702
    • /
    • 2010
  • We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via water-assisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was $7.1{\pm}1.5\;nm$, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (~94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ~20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors.

SPRAY DEPOSITION OF MECHANICALLY ALLOYED F/M ODS STEEL POWDER

  • SUK HOON KANG;CHANG-KYU RHEE;SANGHOON NOH;TAE KYU KIM
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.607-611
    • /
    • 2019
  • Thermal/cold spray deposition were used for additive manufacture of oxide dispersion strengthened (ODS) steel layers. Mechanically alloyed F/M ODS steel powders (Fe(bal.)-10Cr-1Mo-0.25Ti-0.35Y2O3 in wt.%) were sprayed by a high velocity oxygen fuel (HVOF) and cold spray methods. HVOF, as a thermal method, was used for manufacturing a 1 mm-thick ODS steel layer with a ~95% density. The source to objective distance (SOD) and feeding rate were controlled to achieve sound manufacturing. Y2Ti2O7 nano-particles were preserved in the HVOF sprayed layer; however, unexpected Cr2O3 phases were frequently observed at the boundary area of the powders. A cold spray was used for manufacturing the Cr2O3-free layer and showed great feasibility. The density and yield of the cold spray were roughly 80% and 45%, respectively. The softening of ODS powders before the cold spray was conducted using a tube furnace of up to 1200℃. Microstructural characteristics of the cold sprayed layer were investigated by electron back-scattered diffraction (EBSD), the uniformity of deformation amount inside powders was observed.