• 제목/요약/키워드: high-energy ball-milling

검색결과 197건 처리시간 0.028초

Structure and Magnetic Properties of a Fe73.5Si13.5B9Nb3Cu1 Alloy Nanopowder Fabricated by a Chemical Etching Method and Milling Procedure

  • Hong, Seong-Min;Kim, Jeong-Gon;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.71-74
    • /
    • 2009
  • The magnetic and structural properties of FINEMET (the Hitachi product name of the Fe-Si-B-Nb-Cu alloy) nanopowder with a composition of $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ atomic percent were investigated after annealing, chemical etching, and mechanical milling. The primary and secondary crystallization temperatures were 523 and $550^{\circ}C$, respectively. The grain size of the particles was adjusted by annealing time. Optimally annealed particles exhibited a homogenous microstructure composed of nanometer-sized crystalline grains. The grain boundary of the annealed particles was etched preferentially by chemical etching. Chemically etched particles were broken at the grain boundary by high-energy ball milling. As a result, a nanometer-sized FINEMET powder with a uniform size of crystalline grains was fabricated.

Grain 크기 조절을 통한 n-Type Bi2Te3 열전 소재 특성 향상 (Enhanced Thermoelectric Properties in n-Type Bi2Te3 using Control of Grain Size)

  • 이나영;예성욱;;탁장렬;조중영;서원선;신원호;남우현;노종욱
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.91-96
    • /
    • 2021
  • 본 연구에서는 체가름과 고에너지 볼 밀링 공정이 n-type Bi2Te3 열전 재료의 전기적 및 열적 수송 특성에 미치는 영향을 검토하였다. 입자 크기가 감소한 분말의 특성을 유지하기 위하여 짧은 시간 안에 소결이 가능한 방전 플라즈마 소결 공정 (spark plasma sintering, SPS)을 진행하였다. 그 결과, 밀링 처리를 진행한 소결체의 열전 성능지수가 향상되었으며, 30분동안 고에너지 볼 밀링 공정을 거친 샘플이 425 K에서 0.78의 최대 열전 성능지수를 가지는 것을 확인하였다. 이는 손쉬운 공정을 이용하여 결정립 크기 감소를 통한 phonon의 격자 산란을 효과적으로 유도한 결과이다. 동시에 n-type Bi2Te3에서 anti-site defect와 같은 결함을 제어함으로써 캐리어 농도를 증가시킬 수 있음을 본 연구를 통하여 확인하였다.

Highly Economic and High Quality Zinc-flake Manufacturing by High Kinetic Processing

  • Ren, H.;Benz, H.U.;Chimal V., O.;Corral G., M.S.;Zhang, Y.;Jaramillo V., D.;Zoz, H.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.975-976
    • /
    • 2006
  • The present paper is a parameter study of zinc flake production using a Simoloyer CM01 horizontal high energy rotary ball mill. The manufactured flakes have a dimension in thickness (t) < $1{\mu}m$ and diameters (d) 5-100 ${\mu}m$, consequently a ratio d/t up to 200. The flake geometry is mainly controlled by the variation of process parameters such as rotary speed of the rotor, ratio of powder/ball charge, load ratio of the system, process temperature, operating model and the quantity of process control agent (PCA). The Zn flakes were characterized by SEM, tap densitometry, laser diffraction and water coverage measurement.

  • PDF

Study on the Magnetic Characteristics of Anisotropic SmCo7-type Alloys Synthesized by High-energy Surfactant-assisted Ball Milling

  • Yu, N.J.;Zhang, P.Y.;Shi, Y.J.;Pan, M.X.;Zhang, S.Y.;Ge, H.L.;Lu, Y.C.
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.340-344
    • /
    • 2014
  • An effective process was employed for synthesizing anisotropic magnetic $SmCo_7$-type alloy flakes with high coercivity, which is highly desirable for many applications. The highest coercivity of 16.3 kOe corresponds to a typical flake thickness of 200 nm for the 3-h ball-milled sample. The anisotropy field was calculated by measuring the parallel and perpendicular directions to the easy magnetization direction of the powders. The anisotropy field decreased with the increase of the ball milling time, thus indicating that the decrease of coercivity was mainly caused by the reduction of the anisotropy field. Microstructure analysis indicated that the morphology, grain size, and anisotropy field of these samples have a great influence on the magnetic properties.

$Al_2O_3/Cu$ 나노복합분말의 제조 및 소결 특성 (The Fabrication and Sinterability of $Al_2O_3/Cu$ Nanocomposite Powder)

  • 홍대희;오승탁;김지순;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제6권4호
    • /
    • pp.301-306
    • /
    • 1999
  • Mechanical properties of oxide based materials could be improved by nanocomposite processing. To investigate optimum route for fabrication of nanocomposite enabling mass production, high energy ball milling and Pulse Electric Current Sintering (PECS) were adopted. By high energy ball milling, the $Al_2O_3$-based composite powder with dispersed Cu grains below 20 nm in diameter was successfully synthesized. The PECS method as a new process for powder densification has merits of improved sinterability and short sintering time at lower temperature than conventional sintering process. The relative densities of the $Al_2O_3$-5vol%Cu composites sintered at $1250^{\circ}C$ and $1300^{\circ}C$ with holding temperature of $900^{\circ}C$ were 95.4% and 95.7% respectively. Microstructures revealed that the composite consisted of the homogeneous and very fine grains of $Al_2O_3$ and Cu with diameters less than 40 nm and 20 nm respectively The composite exhibited enhanced toughness compared with monolithic $Al_2O_3$. The influence of the Cu content upon fracture toughness was discussed in terms of microstructural characteristics.

  • PDF

고온수전해 수소극용 Cu/YSZ 복합체의 제조 및 미세구조 (Synthesis and Microstructure of Cu/VSZ Composite for High Temperature Electrolysis Cathode)

  • 김종민;정항철;강안수;홍현선
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.238-243
    • /
    • 2007
  • The composite powder of Cu and YSZ was synthesized for a high temperature electrolysis cathode by mechanical milling. The average Cu particle size was reduced to 5 micro-meter from 48 micro-meter after the mechanical ball milling. The composite powder showed that Cu particles were uniformly covered with finer YSZ particles. Sub-micron sized pores were uniformly dispersed in the Cu/YSZ composit. Homogeneously-dispersed fine YSZ in the composite is expected to the increase in triple phase boundaries, thereby leading the enhanced performance of cathode.

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

분말야금법을 활용한 나노 하이브리드 구조 철-망간계 분말야금재 제조 (Development of Fe-Mn-based Hybrid Materials Containing Nano-scale Oxides by a Powder Metallurgical Route)

  • 전종규;김정준;최현주
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.203-209
    • /
    • 2020
  • The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.

Fluid Energy Mill에 의한 점토성 무기소재 미립화 분급기술 소고 (Comminution-Classification of Clay-type Minerals by Fluid Energy Mill)

  • 김태욱;김만영;정필조;이주완
    • 한국세라믹학회지
    • /
    • 제22권5호
    • /
    • pp.47-53
    • /
    • 1985
  • In view of innovated utilization of Korean clay resources conventional techniques for pulverization are reviewed in comparison with fluid energy milling processes of fluidized-bed type. Throughout experiment indigenous halloysite ores (white grade) after usual pretreatment are employed as typical sample. It is evidenced that grinding by means of porcelain ball mills has limitation in reducing clay particles to less than 10${\mu}{\textrm}{m}$ in diameter regardless of whether it is processed in dry or wet. Upon use of tungsten carbide bull mill particulation to submicron sizes could be effected with relative ease but severe coloration in grey is attended indicating metallic contamination possibly from friction of the grinding apparatus itself. In contrast the modified fluid en ergy milling enables particulation to $\leq$10${\mu}{\textrm}{m}$ in diameter with simultaneous classification int olimited ranges of particle size distributions. Since this technique is in principle based on the interparticle collisions rather than on the frictions between particles and mill surfaces minimum impurity attendance would be an additional advantage. Evidence leads to the conclusion that the fluidized-bed type milling is regarded as highly effective in puverization as well as fractionation of the clay minerals under examination. This is especially so in contemplating high-value and/or high-purity clay products.

  • PDF

고에너지볼밀법을 이용한 PMN-PZT 세라믹스의 제조와 압전특성 (Preparation and Piezoelectrical Properties of PMN-PZT Ceramics Prepared by High-Energy Ball Milling)

  • 명성재;구본급
    • 한국세라믹학회지
    • /
    • 제42권10호
    • /
    • pp.685-690
    • /
    • 2005
  • Pb(Zr,Ti)$O_{3}$Pb($Mn_{1/3}$$Nb_{2/3}$)$O_{3}$ powder was successfully synthesised by high-energy milling method, and the behavior of low­temperature sintering and piezoelectrical properties of Pb(Zr,Ti)$O_{3}$-Pb($Mn_{1/3}$$Nb_{2/3}$)$O_{3}$ ceramics were investigated as a function of mechanical alloying time. In order to confirm whether the Perovskite phase in this composition was formed by mechanical activation technique or not, we performed X-Ray Diffraction pattern analysis (XRD). The microstructure for the sintered samples were characterized using a Scanning Electronic Microscope (SEM). And the piezoelectrical properties ($k_{p}$ and $Q_{m}$) of the sintered samples was measured using HP 4194A impedance analyzer.