DOI QR코드

DOI QR Code

Enhanced Thermoelectric Properties in n-Type Bi2Te3 using Control of Grain Size

Grain 크기 조절을 통한 n-Type Bi2Te3 열전 소재 특성 향상

  • Lee, Nayoung (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Ye, Sungwook (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Jamil Ur, Rahman (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Tak, Jang-Yeul (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jung Young (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won Seon (Department of Materials Science & Engineering, Yonsei University) ;
  • Shin, Weon Ho (Electronic Materials Engineering, Kwangwoon University) ;
  • Nam, Woo Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Roh, Jong Wook (Department of Advanced Science and Technology Convergence, Kyungpook National University)
  • 이나영 (경북대학교 미래과학기술융합학과) ;
  • 예성욱 (경북대학교 나노소재공학부) ;
  • ;
  • 탁장렬 (한국세라믹기술원 에너지환경본부) ;
  • 조중영 (한국세라믹기술원 에너지환경본부) ;
  • 서원선 (연세대학교 신소재공학과) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 남우현 (한국세라믹기술원 에너지환경본부) ;
  • 노종욱 (경북대학교 미래과학기술융합학과)
  • Received : 2021.12.13
  • Accepted : 2021.12.30
  • Published : 2021.12.30

Abstract

The enhancement of thermoelectric figure of merit was achieved by the simple processes of sieving and high energy ball milling, respectively, which are enable to reduce the grain size of n-type Bi2Te3 thermoelectric materials. By optimizing the grain size, the electrical conductivities and thermal conductivities were controlled. In this study, spark plasma sintering was employed for hindering the grain growth during the sintering process. The thermoelectric figure of merit was measured to be 0.78 in the samples with 30 min high energy ball milling process. Notably, this value was 40 % higher than that of pristine Bi2Te3 sample. This result shows the properties of thermoelectric materials can be readily controlled by optimization of grain size via simple ball milling process.

본 연구에서는 체가름과 고에너지 볼 밀링 공정이 n-type Bi2Te3 열전 재료의 전기적 및 열적 수송 특성에 미치는 영향을 검토하였다. 입자 크기가 감소한 분말의 특성을 유지하기 위하여 짧은 시간 안에 소결이 가능한 방전 플라즈마 소결 공정 (spark plasma sintering, SPS)을 진행하였다. 그 결과, 밀링 처리를 진행한 소결체의 열전 성능지수가 향상되었으며, 30분동안 고에너지 볼 밀링 공정을 거친 샘플이 425 K에서 0.78의 최대 열전 성능지수를 가지는 것을 확인하였다. 이는 손쉬운 공정을 이용하여 결정립 크기 감소를 통한 phonon의 격자 산란을 효과적으로 유도한 결과이다. 동시에 n-type Bi2Te3에서 anti-site defect와 같은 결함을 제어함으로써 캐리어 농도를 증가시킬 수 있음을 본 연구를 통하여 확인하였다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) Grant [NRF-2018R1D1A1A02085389] and [NRF-2021R1A5A8033165] funded by the Korean government (MSIT), and the BK21 FOUR (Fostering Outstanding Universities for Research).

References

  1. T. M. Tritt and M. A. Subramanian, "Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View," MRS Bulletin, vol. 31, no. March, (2006).
  2. D. M. Rowe, C. M. Bhandari, Modern Thermoelectric, Reston Publishing Company, Inc., Reston, (1983).
  3. G. Tan, L. D. Zhao, and M. G. Kanatzidis, "Rationally Designing High-Performance Bulk Thermoelectric Materials," Chem. Rev., vol. 116, no. 19, pp. 12123-12149, (2016). https://doi.org/10.1021/acs.chemrev.6b00255
  4. C. H. Kuo, C. S. Hwang, M. S. Jeng, W. S. Su, Y. W. Chou, and J. R. Ku, "Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering," J. Alloys Compd., vol. 496, no. 1-2, pp. 687-690, (2010). https://doi.org/10.1016/j.jallcom.2010.02.171
  5. S. S. Lin and C. N. Liao, "Effect of ball milling and post treatment on crystal defects and transport properties of Bi2(Se,Te)3 compounds," J. Appl. Phys., vol. 110, no. 9, (2011).
  6. B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys." Science 320(5876) 634 (2008). https://doi.org/10.1126/science.1156446
  7. G. J. Snyder, E. S. Toberer, "Complex thermoelectric materials", Nature Materials, 7, 105 (2008). https://doi.org/10.1038/nmat2090
  8. J. H. Son et al., "Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3," J. Alloys Compd., 566, 168 (2013). https://doi.org/10.1016/j.jallcom.2013.03.062
  9. S. Cho et al., "Antisite defects of Bi 2 Te 3 thin films." Applied physics letters 75(10), 1401 (1999). https://doi.org/10.1063/1.124707
  10. J. J. Gong et al., "Investigation of the bipolar effect in the thermoelectric material CaMg 2 Bi 2 using a first-principles study." Physical Chemistry Chemical Physics 18(24), 16566 (2016). https://doi.org/10.1039/c6cp02057g
  11. Y. G. Gurevich et al., "Nature of the thermopower in bipolar semiconductors." Physical Review B 51.11 : 6999. (1995). https://doi.org/10.1103/physrevb.51.6999
  12. G. S. Nolas, D. T. Morelli, and T. M. Tritt, "Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications," Annu. Rev. Mater. Sci., vol. 29, pp. 89-116, (1999). https://doi.org/10.1146/annurev.matsci.29.1.89
  13. S. Yoon et al., "The effect of grain size and density on the thermoelectric properties of Bi2Te3-PbTe compounds," J. Electron. Mater., vol. 42, no. 12, pp. 3390-3396, (2013). https://doi.org/10.1007/s11664-013-2753-2
  14. L. P. Hu, T. J. Zhu, Y. G. Wang, H. H. Xie, Z. J. Xu, and X. B. Zhao, "Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction," NPG Asia Mater., vol. 6, no. 2, pp. e88-8, (2014). https://doi.org/10.1038/am.2013.86