• Title/Summary/Keyword: high-damping rubber

Search Result 86, Processing Time 0.021 seconds

Development of Cable Damper System and Its Verification Test (사장교 케이블 댐퍼시스템 개발과 검증실험)

  • Seo, Ju-Won;Kim, Nam-Sik;Suh, Jeong-Gin;Jeong, Woon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.394-402
    • /
    • 2001
  • In order to lessen cable vibration, new cable damper system with high damping rubber was developed using the basis of the LRB design scheme. The analysis model of cable damper system incorporate voigt-kelvin damper model into the nonlinear cable analysis model. To achieve maximum damping capacity both reducing damper stiffness and developing high damping rubber were performed. As a result of verification test, the high damping rubber damper show its effectiveness in improving cable damping capacity.

  • PDF

Experimental Structural Performance Evaluation of Hybrid Damper Combining with High Damping Rubber and Steel Slit (고감쇠고무와 강재슬릿이 결합된 하이브리드 댐퍼의 실험적 구조성능평가)

  • Lee, Joon-Ho;Park, Byung-Tae;Kim, Yu-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • It is effective to apply hybrid damping device that combine separate damping device to cope with various seismic load. In this study, HRS hybrid damper(hybrid rubber slit damper) in which high damping rubber and steel slit plate are combined in parallel was proposed and structural performance tests were performed to review the suitability for seismic performance. Cyclic Loading tests were performed in accordance with criteria presented in KDS 41 17 00 and MOE 2019. As a result of the test, the criteria of KDS 41 17 00 and MOE2019 was satisfied, and the amount of energy dissipation increased due to the shear deformation of the high-damping rubber at low displacement. Result of performing the RC frame test, the allowable story drift ratio was satisfied, and the amount of energy dissipation increased in the reinforced specimen compared to the non-reinforced specimen.

Finite Element Shear Analysis of 3-bar Lap Rubber Specimen for High Damping Rubber Bearing (고감쇠 면진베어링 고무시편의 유한요소 전단해석)

  • Lee, Jae-Han;Yoo, Bong;Park, Ki-Su
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.419-425
    • /
    • 2001
  • The shear modulus of 3-bar lap rubber shear dynamic test specimen is investigated through incremented shear strain tests. The shear force-strain relation of rubber specimen is also calculated by ABAQUS using hyper-elastic material properties of high damping rubber. The analysis results are compatible with shear dynamic tests of 3-bar lap rubber specimen and 1/8 reduced-scale laminated rubber bearing

  • PDF

The Design of Cable Damper System far Jindo Bridge and its Field Verification Test (진도대교 케이블 댐퍼시스템 설계 및 검증실험)

  • Seo, Ju-Won;Kim, Nam-Sik;Ahn, Sang-Sup;Jeong, Woon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.302-310
    • /
    • 2001
  • In order to lessen cable vibration, new cable damper system with high damping rubber was developed using the basis of the LRB design scheme. The analysis model of cable damper system incorporate voigt-kelvin damper model into the nonlinear cable analysis model. To achieve maximum damping capacity both reducing damper stiffness and developing high damping rubber were performed. As a result of verification test, the high damping rubber damper shows its effectiveness in improving cable damping capacity.

  • PDF

Seismic base isolation of precast wall system using high damping rubber bearing

  • Tiong, Patrick L.Y.;Adnan, Azlan;Rahman, Ahmad B.A.;Mirasa, Abdul K.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1141-1169
    • /
    • 2014
  • This study is aimed to investigate the seismic performance of low-rise precast wall system with base isolation. Three types of High Damping Rubber Bearing (HDRB) were designed to provide effective isolation period of 2.5 s for three different kinds of structure in terms of vertical loading. The real size HDRB was manufactured and tested to obtain the characteristic stiffness as well as damping ratio. In the vertical stiffness test, it was revealed that the HDRB was not an ideal selection to be used in isolating lightweight structure. Time history analysis using 33 real earthquake records classified with respective peak ground acceleration-to-velocity (a/v) ratio was performed for the remaining two types of HDRB with relatively higher vertical loading. HDRB was observed to show significant reduction in terms of base shear and floor acceleration demand in ground excitations having a/v ratio above $0.5g/ms^{-1}$, very much lower than the current classification of $0.8g/ms^{-1}$. In addition, this study also revealed that increasing the damping ratio of base isolation system did not guarantee better seismic performance particularly in isolation of lightweight structure or when the ground excitation was having lower a/v ratio.

Finite Element Analysis of High Damping Rubber Bearing for Seismic Isolation (고감쇠면진고무베어링의 유한요소해석)

  • Juhn, J.B.;Kim, H.J.;Jung, K.S.;Kim, K.S.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.292-297
    • /
    • 2000
  • The seismic isolation technology has appeared to be increasingly necessary for highway bridges, LNG tank, nuclear power plant, and building structures in view of earthquake vibrations. Also high-technology industries require effective seismic protection. The Seismic Isolation Bearing - High Damping Rubber Bearing - system has been counted as the most effective way fur seismic isolation, which is now under development and widely used in industries. Here, the commercial FEM software for nonlinear analysis, MARC, has provided force-displacement curves on the rubber system. The analyses have been carried out about fourteen cases; 25%, 50%, 75%, 100%, 125% and 150% horizontal displacements with a different frequency - 0.01Hz and 0.50Hz - and 100% horizontal displacement with four different frequency - 0.01Hz, 0.16667Hz, 0.3333Hz and 0.50Hz. The unknown constants of the strain energy function of Ogden model have been obtained by a tension test and planar shear test.

  • PDF

Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings (고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

An Experimental Study of the Seismic Isolation Systems (or Equipment Isolation : Evaluation of Damping Effect (기기면진을 위한 면진장치의 거동분석실험 (II) : 감쇠특성 분석)

  • 전영선;김민규;최인길;김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.411-418
    • /
    • 2003
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. for this Purpose, shaking table tests were performed. The natural rubber bearing (NRB) and high damping rubber bearing (HDRB) were selected for the isolation. Peak ground acceleration, damping characteristics of isolation system and frequency contents of selected earthquake motions were considered. finally, it is presented that the NRB and HDRB systems are effective for the small equipment isolation and the damping of isolation systems can be affected to the seismic isolation effect.

  • PDF

A Study on Isolation Performance of High Damping Rubber Bearing Through Shaking Table Test and Analysis (진동대 실험 및 해석을 통한 고감쇠 고무받침의 면진성능 연구)

  • Kim, Hu-Seung;Oh, Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.601-611
    • /
    • 2016
  • The research, development and use of seismic isolation systems have been increasing with the gradual development of structure safety assurance methods for earthquakes. The High Damping Rubber Bearing (HDRB), one type of seismic isolation system, is a Laminated Rubber Bearing using special High Damping Rubber. However, as its damping function is slightly lower than that of the Lead Rubber Bearing, a similar seismic isolation system, its utilization has not been high. However, the HDRB has a superior damping force to the Natural Rubber Bearing, which has similar materials and shapes, and the existing Lead Rubber Bearing has a maleficence problem in that it contains lead. Thus, studies on HDRBs that do not use lead have increased. In this study, a test targeting the HDRB was done to examine its various dependence properties, such as its compressive stress, frequency and repeated loading. To evaluate the HDRB's seismic performance in response to several earthquake waves, the shaking table test was performed and the results analyzed. The test used the downscaled bridge model and the HDRB was divided into seismic and non-seismic isolation. Consequently, when the HDRB was applied, the damping effect was higher in the non-seismic case. However, its responses on weak foundations, such as in Mexico City, represented increased shapes. Thus, its seismic isolator.

A study on the design of vibration damper for high speed CD-ROM drives (고배속 CD-ROM Drive의 진동댐퍼 설계에 관한 연구)

  • Chang, Seung-Hwan;Kim, Hyeon-Seok;Choi, Jin-Gyeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.939-952
    • /
    • 1998
  • Rubber dampers are widely used to damp out vibrations generated in many mechanical elements because of the excellent damping characteristics of rubber. The damping characteristics of rubber is much dependent on temperature and frequency, which, in some cases, limit the effectiveness of rubber dampers. In this study, in order to increase the damping properties and axial and cross stiffnesses of rubber vibration dampers which are used in recording and regenerating devices, solid cores were inserted with interference tolerance in the rubber dampers. The damping characteristics of the rubber dampers with cores were investigated by experimentally and numerically using finite element method with respect to the interference tolerance, the core roughness, the materials of the core and the environmental temperature. From the experimental and theoretical investigations, it was found that the core in the rubber increased both the damping and stiffness of the damper. Also, it was found that the damping and stiffness of the rubber damper were much dependent on the temperature and frequency. Using the results of the experimental and theoretical investigations, the optimum design method for the cored rubber damper for recording and regenerating devices was developed.