• Title/Summary/Keyword: high wave

Search Result 4,389, Processing Time 0.027 seconds

Hydrodynamic Characteristics of Tide-Adapting Low-Crested Structure (조위차 극복형 저마루 구조물의 수리특성)

  • Hur, Dong-Soo;Jeong, Yeon-Myeong;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.68-75
    • /
    • 2019
  • A low-crested structure (LCS) is an excellent feature not only because it provides shore protection but also because it is fully submerged. However, in order to properly control waves, it is necessary to maintain a certain range of crest height and width in consideration of the wave dimensions at the installation area. According to previous studies, an LCS has some wave breaking effect when the crest width is more than a fourth of the incident wavelength and the crest depth is less than a third of the incident wave height. In other words, if the crest width of the LCS is small or the crest depth is large, it cannot control the wave. Therefore, when an LCS is installed in a large sea area with a great tidal range in consideration of the landscape, waves cannot be blocked at high tide. In this study, the hydraulic performances of a typical trapezoidal LCS with a constant crest height and a low-crested structure with an adjustable crest height, which was called a tide-adapting low-crested structure (TA-LCS) in this study, were compared and evaluated under various wave conditions through hydraulic experiments. It was found that the wave transmission coefficients of the TA-LCS at high tide were lower than the values for the typical LCS based on empirical formulas. In addition, the hydraulic performances of the TA-LCS for wave reflection control were 12.9?30.4% lower than that of the typical LCS. Therefore, the TA-LCS is expected to be highly effective in controlling the energy of incoming waves during high tide even in a macro-tidal area.

Numerical Analysis of Random Waves Breaking using Boussinesq Equation (Boussinesq방정식을 이용한 불규칙파의 쇄파해석)

  • Lee, Jong-In;Kim, Young-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1931-1934
    • /
    • 2006
  • The accuracy impact of using high-order Boussinesq-type model as compared to the typical order model is examined in this paper. The multi-layer model developed by Lynett and Liu(2004a) is used for simulating of wave breaking over a step region. The overall comparisons between the two-layer model and the hydraulic experiments are quite good. The one-layer model overshoals the wave near the breakpoint, while the two-layer model shoals at a rate more consistent with the experimental data.

  • PDF

Screening of Rayleigh Waves by Composite Barriers (복합방진벽에 의한 Rayleigh파의 차단)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.133-140
    • /
    • 1997
  • Based on the Green's function technique, an analytical approach is developed to examine the surface wave screening effectiveness of composite wave barriers. The composite barrier consists of a high velocity layer sandwiched between two thin layers of low shear velocity materials. The high velocity layer is represented by differential matrix operators which relate the wave fields on each side of the layer. The low velocity layers are modeled by non-rigid contact conditions which allow partial sliding at the interfaces. Screening ratio of barriers with various combination of material, geometric, and non-rigidness parameters are compared and discussed in some detail.

  • PDF

High Gain and Broadband Millimeter-wave MHEMT Cascode Amplifier (고이득 및 광대역 특성의 밀리미터파 MHEMT Cascode 증폭기)

  • An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Lee, Mun-Kyo;Baek, Yong-Hyun;Chae, Yeon-Sik;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.105-111
    • /
    • 2004
  • In this paper, millimeter-wave high gain and broadband MHEMT cascode amplifiers were designed and fabricated. The 0.1 ${\mu}{\textrm}{m}$ InGaAs/InAlAs/GaAs Metamorphic HEMT was fabricated for cascode amplifiers. The DC characteristics of MHEMT are 640 mA/mm of drain current density, 653 mS/mm of maximum transconductance. The current gain cut-off frequency(f$_{T}$) is 173 GHz and the maximum oscillation frequency(f$_{max}$) is 271 GHz. By using the CPW transmission line, the cascode amplifier was designed the matched circuit for getting the broadband characteristics. The designed amplifier was fabricated by the MHEMT MIMIC process that was developed through this research. As the results of measurement, the 1 stage amplifier obtained 3 dB bandwidth of 37 GHz between 31.3 to 68.3 GHz. Also, this amplifier represents the S21 gain with the average 9.7 dB gain in bandwidth and the maximum gain of 11.3 dB at 40 GHz. The 2 stage amplifier has the broadband characteristics with 3 dB bandwidth of 29.5 GHz in the frequency range from 32.5 to 62.0 GHz. The 2 stage cascode amplifier represents the high gain characteristics with the average gain of 20.4 dB in bandwidth and the maximum gain of 22.3 dB at 36.5 GHz.z.z.

Numerical study on attenuation and distortion of compression wave propagation into a straight tube (직관내를 전파하는 압축파의 감쇠와 변형에 관한 수치해석적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2315-2325
    • /
    • 1996
  • A compression wave is attenuated or distorted as it propagates in a tube. The present study investigated the propagation characteristics of the compression waves which are generated by a train in a high-speed railway tunnel. A Total Variation Diminishing (TVD) difference scheme was applied to one-dimensional, unsteady viscous compressible flow. The numerical calculation involved the effects of wall friction, heat transfer and energy loss due to the friction heat in the boundary layer behind the propagating compression wave, and compared with the measurement results of a shock tube and a real tunnel. The present results show that attenuation of the compression wave in turbulent boundary layer is stronger than in laminar boundary layer, but nonlinear effect of the compression wave is greater in the laminar boundary layer. The energy loss due to the frictional heat had not influence on attenuation and distortion of the propagating compression waves.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

The study of the breakup mechanism of a liquid jet by using a high speed camera (고속도카메라에 의한 액주의 분열기구에 관한 연구)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.708-716
    • /
    • 1989
  • The purpose of this study is to investigate the breakup mechanism of a liquid jet in a coaxial air flow. By using the high speed camera, measured were the instantaneous change of the wave length, amuplitude of disturbance, propagation velocity of wave and breakup length, and the relationships between those data were examined. The shape of the surface of the liquid jet appeared to be rather complicated and irregular. The growth rate of disturbance was not constant, and was changed at the moment of 3ms prior to the disintegration of the liquid jet. Simultaneously at this moment, the propagation velocities of the sequential waves were reversed and the wave length was rapidly decreased.

The Observation and Interpretation of Long and Short Wave Radiation of the External Environment Surrounding a Single Building in the Summer (하절기 단일건물 주변 외부공간의 장·단파 복사관측과 해석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • In this study, we analyzed the relationship between four elements: long-wave radiation, the direction of the building, BVR (Building View Ratio), and cloud amount. We examined how long-wave radiations surrounding a building influences the perception of heat in the summer. The results are as follows. (1) Long-wave radiation and BVR are highly correlated regardless of geographical direction. (2) Especially, during dawn in a clear day, areas with high BVR observed high levels of long-wave radiation. (3) This correlation suggests that higher BVR in urban areas will result in a greater number of tropical nights.

An Interacting Wave Profile of Three Trains of Gravity Waves on Finite Depth by Contraction Method

  • JANG TAEK-SOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.43-47
    • /
    • 2006
  • Superposition of three wave trains on finite depth is investigated. This paper is focused on how to improve the linear superposition of three waves. This was realized by introducing the scheme. The idea of the scheme is based on a fixed point approach. Application of the scheme to the superposition makes it possible to obtain a wave profile of wave-wave interaction. With the help of FFT, it was possible to analyze high-order nonlinear frequencies for three interacting Stokes' waves on finite depth.