• 제목/요약/키워드: high volume fly ash

검색결과 126건 처리시간 0.025초

혼화재 다량 치환 콘크리트의 현장 적용을 위한 혼화재 치환율에 관한 연구 (Study on the Mineral Admixture Replacement Ratio for Field Application of Concrete with High Volume Mineral Admixture)

  • 이재현;김용로;박종호;정용
    • 한국건설순환자원학회논문집
    • /
    • 제1권2호
    • /
    • pp.93-100
    • /
    • 2013
  • 최근 플라이애시 및 고로슬래그 미분말을 다량 치환하는 콘크리트에 대한 연구가 활발히 진행되고 있다. 혼화재 다량 치환 콘크리트를 실제 현장에서 골조용으로 적용하기 위해서는 적정 치환율을 도출하는 것이 중요하다. 이에 본 연구에서는 혼화재 다량 치환 콘크리트의 특성을 파악하기 위해 작업성을 동일하게 확보한 조건에서 플라이애시 및 고로슬래그 미분말의 치환율 및 양생온도에 따른 압축강도의 변화를 측정하였다. 검토 결과, 플라이애시의 치환율이 10% 증가할시 재령 3일 압축강도는 약 1.4MPa, 재령 28일 압축강도는 약 3.8MPa가 감소하는 것으로 나타났으며, 고로슬래그의 치환율이 10% 증가할시 재령 3일 압축강도는 약 1.0MPa, 재령 28일 압축강도는 약 0.9MPa가 감소하는 것으로 나타났다. 본 연구를 통해 향후 공동주택의 골조용 혼화재 다량 치환 콘크리트의 연구개발을 위한 기초자료를 확보할 수 있었다.

Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions

  • Shafigh, Payam;Yousuf, Sumra;Ibrahim, Zainah;Alsubari, Belal;Asadi, Iman
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.419-428
    • /
    • 2021
  • The pH of cement-based materials (CBMs) is an important factor for their durability, sustainability, and long service life. Currently, the use of supplementary cementitious materials (SCMs) is becoming mandatory due to economic, environmental, and sustainable issues. There is a decreasing trend in pH of CBMs due to incorporation of SCMs. The determination of numerical values of pH is very important for various low and high volume SCMs blended cement mortars for the better understanding of different defects and durability issues during their service life. In addition, the effect of cement hydration and pozzolanic reaction of SCMs on the pH should be determined at initial and later ages. In this study, the effect of low and high-volume fly ash (FA) and ground granulated ballast furnace slag (GGBFS) cement mortars in different curing conditions on their pH values has been determined. Thermal gravimetric analysis (TGA) was carried out to support the findings from pH measurements. In addition, thermal conductivity (k-value) and strength activity indices of these cement mortars were discussed. The results showed that pH values of all blended cement mortars were less than ordinary Portland cement (OPC) mortar in all curing conditions used. There was a decreasing tendency in pH of all mortars with passage of time. In addition, the pH of cement mortars was not only dependent on the quantity of Ca(OH)2. The effect of adding SCMs on the pH value of cement mortar should be monitored and measured for both short and long terms.

다량의 혼화재를 사용한 고강도 콘크리트의 역학적 특성 (Mechanical Properties of High Strength Concrete with High Volume Mineral Admixture)

  • 백철우;박조범;최성우;조현태;류득현
    • 한국건설순환자원학회논문집
    • /
    • 제2권3호
    • /
    • pp.180-187
    • /
    • 2014
  • 본 연구에서는 시멘트 사용량을 저감하고 다량의 혼화재를 사용하여 고강도 콘크리트 제조 과정에서 시멘트에 의한 $CO_2$ 발생량을 감소시킬 목적으로 혼화재 및 무기계 자극제를 사용한 고강도 콘크리트의 역학적 특성을 평가하였으며, HVMA 결합재 도출과 W/B 변화 및 양생온도에 따른 HVMA 고강도 콘크리트를 실험하였다. 실험결과, 다량의 혼화재와 무기계 자극제인 열병합애시와 무수석고를 혼합 사용한 HVMA 결합재 배합을 설계하였으며, 설계된 HVMA 결합재를 사용할 경우 W/B 26% 수준에서 HVMA 고강도 콘크리트 배합이 유동특성과 역학적 특성이 양호한 것으로 나타났다. 또한 HVMA 결합재를 사용한 고강도 콘크리트의 양생온도 영향을 검토한 결과, 양생온도 $20^{\circ}C$ 이상 확보한 경우에는 50MPa 이상의 고강도 HVMA 고강도 콘크리트 제조가 실용화 가능성이 높은 것으로 나타났다.

플라즈마를 이용한 도시 쓰레기 소각재 용융처리 기술 (Slagging treatment of MSW incineration ash by plasma system)

  • 박현서;지규일;장준섭;전석구;배희주;김형진;이시창;주성준;신범수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.65-68
    • /
    • 1999
  • A plasma melting system to vitrify ny ash from MSW(Municipal Solid Waste) incinerator has been operated in SHI(Samsung Heavy Industries) since 1996. Waste feeding rate was 200kg/hr. with maximum working power of 500㎾. Because of high melting temperature of fly ash, bottom ash was used as an additive to decrease melting temperature. Data analysis for discharged slag shows volume reduction up to 30% and no leaching of heavy metals such as Pb, Cd, Cr which were an obstacle for landfill and recycle. Atmospheric pollution gas like nitrogen oxides, carbon monoxide, and PCDD/PCDF were restrained below the regulatory limit.

  • PDF

Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature

  • Sahani, Ashok Kr.;Samanta, Amiya K.;Roy, Dilip K. Singha
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.263-275
    • /
    • 2019
  • In the present work, Granulated Blast Furnace Slag (GBFS) and Fly ash (FA) were used as partial replacement of Natural Sand (NS) and Ordinary Portland Cement (OPC) by weight. One control mix, one with GBFS, three with FA and three with GBFS-FA combined mixes were prepared. Replacements were 50% GBFS with NS and 20%, 30% and 40% FA with OPC. Preliminary investigation on development of compressive strength was carried out at 7, 28 and 90 days to ensure sustainability of waste materials in concrete matrix at room temperature. After 90days, thermo-mechanical study was performed on the specimen for a temperature regime of $200^{\circ}-1000^{\circ}C$ followed by furnace cooling. Weight loss, visual inspection along with colour change, residual compressive strength and microstructure analysis were performed to investigate the effect of replacement of GBFS and FA. Although adding waste mineral by-products enhanced the weight loss, their pozzolanicity and formation history at high temperature played a significant role in retaining higher residual compressive strength even up to $800^{\circ}C$. On detail microstructural study, it has been found that addition of FA and GBFS in concrete mix improved the density of concrete by development of extra calcium silicate gel before fire and restricts the development of micro-cracks at high temperature as well. In general, the authors are in favour of combined replacement mix in view of high volume mineral by-products utilization as fire protection.

결합재의 종류에 따른 인산석고를 다량 함유한 경화체의 강도 특성 (The Strength Properties of Cement Matrix containing High-Volume Wasted Phosphogypsum with Binder Types)

  • 문경주;형원길;박원춘;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.881-884
    • /
    • 2006
  • Wasted phosphogypsum is a by-product from the phosphoric acid process of manufacturing fertilizers. It consists mainly of $CaSO_4{\cdot}2H_2O$ and contains some impurities. The purpose of this study is to utilize wasted phosphogypsum into an admixture for concrete products cured by steam This paper is to investigate the strength properties of cement composites containing high volume phosphogypsum. The cement composites were composed of OPC, phosphogypsum, fly-ash and granulated blast-furnace slag with activators. As a result, the strength of cement composites containing high volume wasted phosphogypsum were shown high level when granulated blast-furnace slag was mixed. Therefore, PG could be used as a steam curing admixture for concrete 2th production with reduction of OPC.

  • PDF

플라이애시 품질 변화가 고강도 모르타르의 공학적 특성에 미치는 영향 (Effects of Quality Change of Fly Ash on Engineering Properties of High-strength Mortar)

  • 문병룡;송원루;박용준;송흥호;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.47-48
    • /
    • 2016
  • Recently over the world, many studies on the methods for using some binding materials which replace cement, such as FA, etc., for reducing CO2. However, it has sometimes been reported that some cement products without passing through the refining process at some of FA refineries in Korea are released for sales for some reasons of shortening the production time and the cost reduction, etc., so it exerts a bad effect on the quality of many construction structures. Therefore, in this study, it was intended to conduct an experimental review on the effects of using an extreme quality of FA which is distributable domestically on the engineering characteristics of high-strength mortar. As a result, it was judged that it is beneficial for the engineering characteristics of concrete, such as, flow property, air volume and strength, etc, to use some refined FA.

  • PDF

고로슬래그 다량치환 콘크리트의 원전 콘크리트 적용을 위한 내구성능 평가 (Durability Properties of High Volume Blast Furnace Slag Concrete for Application in Nuclear Power Plants)

  • 서은아;이장화;이호재;김도겸
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.45-52
    • /
    • 2017
  • 이 연구에서는 고로슬래그 다량 치환 콘크리트의 원전 콘크리트 적용을 위하여 기존 원전 콘크리트와의 내구성능 비교 및 분석을 수행하였다. 연구결과에 따르면 고로슬래그를 50% 치환한 콘크리트의 압축강도는 초기강도는 기존 원전 콘크리트보다 낮지만, 우수한 장기강도를 나타내었다. 반면, 기존 원전 콘크리트의 초기강도는 높았지만, 장기강도 발현율이 낮게 나타났다. 내구성능의 평가결과, 고로슬래그를 50% 치환한 콘크리트의 내구성능은 모든 평가항목에서 플라이애시 20% 치환 콘크리트와 비교하여 동등이상의 성능을 나타내었다. 특히. 저강도에서의 고로슬래그 50% 치환한 콘크리트는 염해 저항성과 탄산화 저항성, 동결융해 저항성의 향상효과가 뚜렷하게 나타났다. 반면, 감마선 조사에 따른 콘크리트 압축강도와 화학성분의 변화는 미미하게 나타났다.

Sustainable controlled low-strength material: Plastic properties and strength optimization

  • Mohd Azrizal, Fauzi;Mohd Fadzil, Arshad;Noorsuhada Md, Nor;Ezliana, Ghazali
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.393-407
    • /
    • 2022
  • Due to the enormous cement content, pozzolanic materials, and the use of different aggregates, sustainable controlled low-strength material (CLSM) has a higher material cost than conventional concrete and sustainable construction issues. However, by selecting appropriate materials and formulations, as well as cement and aggregate content, whitethorn costs can be reduced while having a positive environmental impact. This research explores the desire to optimize plastic properties and 28-day unconfined compressive strength (UCS) of CLSM containing powder content from unprocessed-fly ash (u-FA) and recycled fine aggregate (RFA). The mixtures' input parameters consist of water-to-cementitious material ratio (W/CM), fly ash-to-cementitious materials (FA/CM), and paste volume percentage (PV%), while flowability, bleeding, segregation index, and 28-day UCS were the desired responses. The central composite design (CCD) notion was used to produce twenty CLSM mixes and was experimentally validated using MATLAB by an Artificial Neural Network (ANN). Variance analysis (ANOVA) was used for the determination of statistical models. Results revealed that the plastic properties of CLSM improve with the FA/CM rise when the strength declines for 28 days-with an increase in FA/CM, the diameter of the flowability and bleeding decreased. Meanwhile, the u-FA's rise strengthens the CLSM's segregation resistance and raises its strength over 28 days. Using calcareous powder as a substitute for cement has a detrimental effect on bleeding, and 28-day UCS increases segregation resistance. The response surface method (RSM) can establish high correlations between responses and the constituent materials of sustainable CLSM, and the optimal values of variables can be measured to achieve the desired response properties.

탄산화 억제제 사용 따른 혼화재 다량 치환 콘크리트의 탄산화 억제 (Carbonation Mitigation of the High Volume Admixture Concrete according to Application Method of Carbonation Resistance Material)

  • 조만기;최영두;손호정;우대훈;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.271-273
    • /
    • 2012
  • This paper is to investigate the effect of waste cooking oil(WCO) on carbonation resistance of high volume fly ash and blast furnace slag concrete. WCO and paint were applied for carbonation resistance materials. As expected, the application of WCO to the concrete help it reduce carbonation depth remarkably, regardless of mixture types. This may be due to the fact that WCO makes the capillary pore block by activating saponification. It is found that the degree of carbonation reduce due to WCO is much higher than the case by Paint.

  • PDF