• Title/Summary/Keyword: high voltage insulator

Search Result 300, Processing Time 0.03 seconds

PD Measure and UV Detection in according to Withstand Voltage Characteristics of Polymer Insulator (폴리머 애자의 내전압 특성에 따른 부분방전 측정과 자외선 검출)

  • Shong, Kil-Mok;Kim, Young-Seok;Kim, Jong-Seo;Jung, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.76-77
    • /
    • 2008
  • The purposes of this paper ensure for the economical efficiency, accuracy, and good applications in domestic site set up the power installations. For the efficient conduct of these purposes, there are measured the partial discharge(PD) used by current probe and compared with detected signal of UV sensor. As the results, PD generated about 35% of breakdown voltage in polymer insulator. UV signal due to high voltage in polymer insulator is detected from about 1.7mV at 30kV to about 3mV at 70kV. Signal detected by ultra-sonic is increased at about 75% of breakdown voltage abruptly. It appears that error range is increased in boundary. UV sensor is needed must use from the practical and economical points of view.

  • PDF

Development of Section Insulator with Improved Wear Characteristics (내마모성이 우수한 절연구분장치 국산화 개발)

  • Lee, Kiwon;Jung, Hosung;Park, Young;Cho, Ho Ryung;Lee, Sang Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1633-1639
    • /
    • 2013
  • In a section of AC electric railway, a phase between the sections is different although voltage levels supplied from substations are the same. Therefore, section insulators have been installed to electrically divide between the sections. Two differenet types of section insulator, namely an overlap type and insulator type, are used. In Korean high-speed lines, overlap type section insulator has been adopted. And, insulator type is used in conventional line. The overlap type has the advantage of having no speed limit, but has the disadvantage of requiring long section length. However, the insulator type has the advantage of section length, but also has the disadvantage of having speed limit. In Korean conventional line, an insulator type one relies on the import and there is some problem with wear. In this study, we developed the insulator type section insulator which adopts Teflon tube insulation material. The Teflon material has advantage of the excellent electrical characteristics and wear-resistance characteristics for a longer expected life than that made of existing FRP. In order to compare wear characteristics between the materials, wear tests with reciprocal wear tester are performed. And dynamic behavior tests between the insulators and pantograph are also performed for showing its better dynamic characteristics.

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.

Silicone Rubber as the Shed Material of Composite Insulator for Electric Power Distribution and Transmission (송배전용 COMPOSITE INSULATOR의 SHED 재질로서 실리콘 고무)

  • Kang, D.P.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1367-1369
    • /
    • 1994
  • Recently composite insulators have been In the spotlight because they have many good characteristics as a outdoor insulator for high voltage. The long term properties in composite insulator depend on shed materials. Silicone rubber out of some candidates of shed material has been obtaining good credit from the long term test in field.

  • PDF

Influence of Partial Discharge Properties due to Void in Cable Joint Parts (케이블 접속재 부분방전 특성에 미치는 보이드의 영향)

  • 신종열;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.69-74
    • /
    • 2003
  • To investigate the partial discharge and electric field distribution in cable joint parts, we measured the partial discharge and electric field in specimen. The specimens which cross-linked polyethylene(XLPE) and ethylene propylene diene ethylene(EPDM) are used to insulating material for underground cable md cable jointing parts. The polymers are used to insulating material in switchgear which is a kind of transformer equipment and in ultra-high voltage cable. Its using is increasing gradually, the electrical insulation properties are not only excellent but also mechanical property is excellent. And because it is possible to be made void of several type in insulator while it is produced, which the electrical field distribution is changed by void, it has a critical influence to insulator performance. The underground cable is connecting by the jointing material, insulating breakdown and the electric ageing which are caused by several mixing impurity and the damage of cable insulator layer, which reduced the life of cable while intermediate joint kit is connected. Therefore, the computer simulation is used to estimating insulator performance, XLPE is used to the insulating material of ultra-high voltage cable and EPDM is used to insulator layer in joint material kit, and which are produced as specimen. And it is analyzed the electric field concentrating distribution and partial discharge by modeling of computer simulation in void and cable joint kit.

Surface Degradation of Silicone Rubber Insulator by Salt-fog Test (Salt-fog 분무에 따른 실리콘 고무 애자의 표면열화)

  • 장동욱;박영국;강성화;이용희;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.509-512
    • /
    • 1999
  • The main problem in porcelain as a high voltage insulator is that the water film is felled on the insulator surface due to rain, flog, and dew. In the presence of contamination. leakage current increases which may lead to flashover that could be followed by an outage of the power system. These days, high voltage polymer outdoer insulators have been studied and widely used, because they have excellent electrical and mechanical properties, superior performance of flashover for contamination. light weight, easy installation or handling. no maintenance during service, competitive price, and so on. First of a1l the excellent performance of the silicone rubber in polluted and wet conditions is attributed to the ability of the material to maintain the hydrophobicity of the surface in the presence of severe contaminants and wet conditions. This is due to a low surface energy of the silicone rubber. But the leakage current and some surface discharge occurs on the surface of insulator when the insulator is used for a long time. So the leakage current and the surface discharge current are important lo estimate the condition of the silicone rubber surface. In this paper, the average leakage current the surface discharge current the surface rubber surface with the salt fog condition for the first stage.

  • PDF

Analysis on Solid Insulator Flashover Characteristics on Moisture Contamination for Electrical Insulation Improvement of ESS (ESS 안전성 개선을 위한 결로 운전 조건 고려 고체절연물 연면 절연파괴특성 분석)

  • Kim, Jin-Tae;Lee, Seung-Yong;Kim, Ji-young;Seok, Bok Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.317-321
    • /
    • 2021
  • As the large-scale renewable energy power plant increases, the high-capacity and compact Energy Storage System (ESS) is required. However, this trend could reduce the insulation reliability of ESS. In this study, the surface flashover characteristics for four types of solid insulators are investigated in the uniform electric field with AC and Lightning Impulse (LI) voltage waveforms under various contamination levels. In addtion, insulator surfaces are compared based on the contact angle before and after surface flashover. The experimental results show that AC flashover voltage is dependent on the materials and the contamination level, but LI flashover voltage is only associated with the contamination level. Especially, AC flashover voltage of PC (PolyCarbonate) is higher than that of other insulators, which is associated with the unique and sequential creepage discharge propagation pattern of PC. The localized discharges on the surface of PC form corresponding tracking points. Then, the interconnected trackings result in the complete flashover. This flashover patterns degrade the surface of PC much more than that of epoxy and Bulk Molding Compoud (BMC). Thus, the contact angle of PC is significantly reduced compared to that of other insulators. The increased hydrophilicity in the surface of PC enhances the insulator surface conductivity.

Analysis of Surface flashover Depending on Gap Distance in Epoxy Region (에폭시 연면거리에 따른 파괴전압 분석)

  • Yoon, Jae-Hun;Lee, Sueng-Su;Lim, Kee-Jo;Kang, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.400-400
    • /
    • 2009
  • In a wide variety of high-voltage applications surface flashover plays major role in the system's performance and yet has not been studied in great detail for atmospheric conditions with modem diagnostic tools. surface flashover for both direct current and pulsed voltages in considered. within the setup, parameters such as geometry, material characteristics of the applied voltage can be altered. This paper review surface flashover of insulator, primarily in atmosphere. It discusses theories and models relating to surface flashover and experimental results. surface flashover of insulators in atmosphere generally is initiated by the emission of electrons from the cathode triple junction point (the region where the electrode, insulator, air). the electrode material was copper, and a AC voltage was applied between the electrodes. these results were compared with the surface flashover characteristic of epoxy.

  • PDF

A study on the breakdown characteristics of power p-n junction device using field limiting ring and side insulator wall (전계제한테와 측면 유리 절연막 사용한 전력용 p-n 접합 소자의 항복 특성 연구)

  • 허창수;추은상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.386-392
    • /
    • 1996
  • Zinc-Borosilicate is used as a side insulator wall to make high breakdown voltage with one Field Limiting Ring in a power p-n junction device in simulation. It is known that surface charge density can be yield at the interface of Zinc-Borosilicate glass / silicon system. When the glass is used as a side insulator wall, surface charge varied potential distribution and breakdown voltage is improved 1090 V under the same structure.The breakdown voltage under varying the surface charge density has a limit value. When the epitaxial thickness is varied, the position of FLR doesn't influence to the breakdown characteristic not only under non punch-through structure but also under punch-through structure. (author). 7 refs., 12 figs., 2 tabs.

  • PDF

Mechanical Strength Analysis of Ultra High Voltage Suspension Insulator (초고압 현수애자의 기계적 강도 해석)

  • 조한구;한세원;박기호;이동일;안용호;최연규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.776-779
    • /
    • 2001
  • The main objective of this paper is to design and mechanical strength analysis of UHV(Ultra High Voltage) suspension insulator. One of the important properties required for suspension insulators is mechanical strength under tensile load. The cement and porcelain part are express according to change of pin head type an aspect mechanical stress. These insulators are designed and produced by using the computer analysis of mechanical, electrical and electrical stresses together with the technical know-how accumulated from long years of study into every respect of insulators.

  • PDF