• Title/Summary/Keyword: high void ratio

Search Result 165, Processing Time 0.02 seconds

Experimental Studies of Shearing Properties on Compacted Nakdong River Silty Sands under Unconsolidated Undrained Condition (비압밀비배수조건에서 다져진 낙동강 실트질 모래의 전단거동에 대한 실험적 연구)

  • Khin, Swe Tint;Kim, Young-Su
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.57-62
    • /
    • 2010
  • In this study, the effect of different silt contents on the shear characteristics of silty sands was evaluated. Two series of triaxial compression tests were performed on the cylindrical specimens of compacted Nakdong river sand with 10% and 30% silt contents under unconsolidated undrained condition. All identical specimens were prepared to compact with same initial water content for five layers and saturated using control panel and then sheared under initial effective confining pressure, 100 to 400kPa. All specimens exhibited a strain softening tendency after failure in stress-strain curves and deviator stresses of specimens with 10% silt content were greater than those of specimens with 30% silt content. Pore water pressures of specimens with 10% silt content were observed negative(i.e. swelling) due to increasing void ratio after failure but those of specimens with 30% silt content were shown only positive. The behavior of compacted cylindrical specimens with low silt content was more dilative than that of high silt content. Peak deviator stresses decreased as increasing silt content and peak pore water pressures increased as increasing silt content.

Molecular Size Fractionation of Soil Fulvic Acid by Gel Filtration Chromatography and Analysis of Their Fluorescence Characteristics (겔 여과 크로마토그래피에 의한 토양 풀빅산의 분자량 분획 및 형광특성 분석)

  • Chung, Kun-Ho;Shin, Hyun-Sang;Lee, Wanno;Cho, Yeong-Hyun;Choi, Geun-Sik;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • The molecular size distribution and fluorescence properties of soil fulvic acids (FA) were characterized by using gel filtration chromatography (GFC) and luminescence spectroscopy. The objectives of this work were to fractionate the FA extracted from a forest soil into different nominal molecular size using GFC system and to characterize the fluorescence properties (excitation, emission and synchronous) of these fractions using luminescence spectrometer. The GFC column was calibrated with polyethylene glycols, acetone and dextrane Blue. The total permeation volume of the GFC system was 404 mL and the void volume 130 mL. The GFC molecular weight of the soil FA was in the range of 190~8,900 Dalton and the molecular weight at the peak on the chromatogram was 930 Dalton. The fluorescence intensity ratio ($I_{498nm}/I_{390nm}$) was found to be increased with an increasing molecular weight. This results may suggest that the fulvic acid fractions with high molecular weight have large amount of the condensed aromatic compound.

A Study on the Calculation of Consolidation Constants using Moisture Content of Sedimentary Clay in Busan and Gyeongnam Regions (부산·경남지역 퇴적 점토의 함수비를 이용한 압밀정수 산정 연구)

  • Sung-Uk Kang;Dae-Hwan Kim;Tae-hyung Kim;Chin-Gyo Chung;In-Gon Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, physical property tests and standard consolidation tests were conducted on the marine clay of Busan New Port and North Port, the middle and lower reaches of the Nakdong River including Gimhae and Yangsan, and Ulsan regions. The moisture content, a property unrelated to sample disturbance with small individual test errors, was used for regression analysis with the compression index, virgin compression index, consolidation coefficient, expansion index, and secondary compression index, among others. Subsequently, the correlation and accuracy were evaluated. Upon analyzing the correlation between the moisture content, void ratio, and liquid limit commonly used physical properties for calculating compression indexes, it was confirmed that the liquid limit had the lowest correlation. Through a linear regression analysis of the consolidation constants using the current moisture content in the natural state, a high correlation was demonstrated. Relationship equations were then presented to determine settlement and settlement time. This study suggests that moisture content can be utilized as an alternative for evaluating and calculating consolidation constants when examining ground settlement in sedimentary clays distributed in the Busan and Gyeongnam regions.

Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Kim, Jong-Uk;Hyeong, Ki-Seong;Ko, Young-Tak;Lee, Kyeong-Yang
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.739-752
    • /
    • 2006
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF