Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific

북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구

  • Chi, Sang-Bum (Deep-sea Resources Research Division, Korea Ocean Research & Development Institute) ;
  • Lee, Hyun-Bok (Deep-sea Resources Research Division, Korea Ocean Research & Development Institute) ;
  • Kim, Jong-Uk (Deep-sea Resources Research Division, Korea Ocean Research & Development Institute) ;
  • Hyeong, Ki-Seong (Deep-sea Resources Research Division, Korea Ocean Research & Development Institute) ;
  • Ko, Young-Tak (Deep-sea Resources Research Division, Korea Ocean Research & Development Institute) ;
  • Lee, Kyeong-Yang (Deep-sea Resources Research Division, Korea Ocean Research & Development Institute)
  • 지상범 (한국해양연구원 심해연구사업단) ;
  • 이현복 (한국해양연구원 심해연구사업단) ;
  • 김종욱 (한국해양연구원 심해연구사업단) ;
  • 형기성 (한국해양연구원 심해연구사업단) ;
  • 고영탁 (한국해양연구원 심해연구사업단) ;
  • 이경용 (한국해양연구원 심해연구사업단)
  • Published : 2006.12.30

Abstract

Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

북동태평양 클라리온-클리퍼톤 균열대(Clarion-Clipperton Fracture Zone) 사이에 위치한 연구지역 퇴적물의 입도, 함수율, 입자 밀도, 전밀도, 공극비, 그리고 공극률 등 물리적 특성과 퇴적학적 변화요인을 파악하기 위하여 1999년부터 2002년까지 7회의 조사작업을 통해 연구지역 각 지점에서 다중주상시료채취기로 채취된 69개 표층퇴적물을 분석하였다. 연구지역 퇴적물은 원양성 적점토가 분포하는 북부지역(북위 16-17도), 생물기원의 규질 퇴적물이 분포하는 중부지역(북위 10-11도), 탄산질 퇴적물이 분포하는 남부지역(북위 5-6도)으로 구분되며, 퇴적물의 물리적 특성은 이들 퇴적물의 유형에 따라 뚜렷이 다른 특성을 보인다. 북부지역은 수층의 기초생산성이 낮고 육성기원 입자의 유입이 많으므로 입도는 세립질이며, 함수율이 낮은 특성을 보인다. 반면에 중부지역은 수층의 생산성이 높고 수심이 탄산염보 상심도보다 깊으므로 다공질이며 입자크기가 큰 생물기원 규질 입자의 유입이 높아 평균입도는 가장 조립질이며, 함수율이 매우 높다. 한편, 남부지역은 수심이 탄산염보상심도보다 얕으므로 수층으로부터 유입되는 탄산질 퇴적물이 용해되지 않고 지속적으로 퇴적되어 가장 낮은 함수율과 높은 밀도를 보인다. C-C지역 퇴적물의 물리적 특성과 연관된 주요 요인들은 적도부근 해역의 높은 생산성에 따른 생물기원 입자의 유입, 탄산염보상심도를 고려한 수심 수층 생산성에 비례하는 퇴적률, 대륙으로부터 바람에 의해 유입되는 육성기원 입자의 공급, 그리고 생물기원 퇴적입자의 용해 및 자생광물의 형성과 연관된 저층해수의 화학적 특성 등으로 판단할 수 있다.

Keywords

References

  1. 이희준(1991) 한국 주변해역 퇴적물의 지질공학적 성질과 퇴적작용과의 관계. 서울대학교 대학원 박사학위 논문, 291p
  2. 지상범(1994) 북적도 태평양 심해저 퇴적물과 망간단괴의 지질공학적 특성 및 음향특성. 인하대학교 석사학위논문, 85p
  3. 지상범, 김기현, 문재운, 이경용, 손승규, 오재경 (2000) 북동태평양 KODOS 지역 심해저 퇴적물의 지질공학적 특성. 한국해양학회지, v. 5, p. 320-334
  4. 지상범(2003) 북동태평양 심해저 퇴적물의 지질공학적 특성 및 망간단괴 분포 특성. 인하대학교 대학원 박사학위 논문. 185p
  5. 해양수산부 (1998) 심해저 광물자원 탐사 보고서(1). 해양수산부 보고서 BSPM98001- 01-1117-7, 1209p
  6. 해양수산부(2002) 심해저 광물자원 탐사 보고서(1). 해양수산부 보고서 CRPM137- 00-1503-5, 683p
  7. Almagor, G. (1982) Marine geotechnical studies at continental margins (a review - Part I). Applied Ocean Research, v. 4, p. 92-98
  8. Baltzer, A., Cochonat, P., and Piper, D.J.W (1994) In situ geotechnical characterization of sediments on the Nova Scotian Slope, eastern Canadian continental margin. Marine Geology, v. 120, p. 291-308 https://doi.org/10.1016/0025-3227(94)90063-9
  9. Bennett, R.H. and Keeler, G.H. (1970) Mass property variability in three closely spaced deep-sea sediment cores. Journal of Sedimentary Petrology, v. 40, p. 1038-1043
  10. Bennett, R.H., Lehman, L., Hulbert, M.H., Harvey, G.R., Bush, S.A, Forde, E.B., Crews, P., and Sawyer, W.B. (1985) Interrelationships of organic carbon and submarine sediment geotechnical properties. Marine Geotechnology, v. 6, p. 61-98 https://doi.org/10.1080/10641198509388180
  11. Bennett, R.H., O'Brien, N.R, and Hulbert, M.H. (1991) Determinants of clay and shale microfabric signatures: processes and mechanisms, Microstructure of Fine-Grained Sediments: From Mud to Shale. SpringerVerlag, London, p. 5-32
  12. Berger, W.H., Adeleck, C.G., and Mayer, L.A. (1976) Distribution of carbonate in surface sediment of the Pacific Ocean. Journal of Geophysical Research, v. 81, p. 2617-2627 https://doi.org/10.1029/JC081i015p02617
  13. Booth, J.S., Winter, W.J., Poppe, L.J., Neiheisel, J., and Dyer, R.S. (1989) Geotechnical, geological, and selected Radionucleid retention characteristics of the radioactive waste disposal site near the Farallon Islands. Marine Geotechnology, v. 8, p. 111-132 https://doi.org/10.1080/10641198909379863
  14. Brown, J., Colling, A., Park, D., Phillips, J, Rothery; D., and Write, J. (1989) Ocean chemistry and deep-sea sediments. G. Bearman. pergamon press, 134p
  15. Chester, R (1990) Marin geochemistry. Unwin Press, London, 698p
  16. Cole, T.G. (1985) Composition, oxygen isotope geochemistry; and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochimica et Cosrnochimica Acta, v. 49, p. 221-235 https://doi.org/10.1016/0016-7037(85)90206-6
  17. Edmond, J.M., Chung, Y.C., and Sclater, J.G. (1971) Pacific bottom water: penetration east around Hawaii. Journal of Geophysical Research, v. 76, p. 8089-8097 https://doi.org/10.1029/JC076i033p08089
  18. Francheteau, J., Harrison, C.G.A., Sclater, J.G., and Rich- ards, M.L. (1979) Magnetization of Pacific seamounts: A preliminary polar cure for the northeastern Pasific. Journal of Geophysical Research, v. 75, p. 2035-2062 https://doi.org/10.1029/JB075i011p02035
  19. Grupe, B., Becker, H.J., and Oebius, H.U. (2001) Geotechnical and sedimentological investigations of deepsea sediments from a manganese nodule field of the Peru Basin, Deep-sea Research II, v. 48, p. 3593-3608 https://doi.org/10.1016/S0967-0645(01)00058-3
  20. Hagerty, R. (1974) Usefulness of spade cores for geotechnical studies and some results from the northeast Pacific. In Inderbitzen, A.L. (ed.) Deep-Sea sediments: physical and mechanical properties, Plenum Press, New York, p. 169-186
  21. Hayes, J.D., Saito, T., Opdyke, N.D., and Bruckle, L.H. (1969) Pliocene-Pleistocene sediments of the equatorial Pacific: their paleomagnetic, biostragraphic, and climatic record. Geological Society of America Bulletin, v. 80, p. 1481-1514 https://doi.org/10.1130/0016-7606(1969)80[1481:PSOTEP]2.0.CO;2
  22. Herron, E.M. (1972) Sea-floor spreading and the Cenozoic history of the east-central Pacific. Geological Society of America Bulletin, v. 83, p. 1671-1692 https://doi.org/10.1130/0016-7606(1972)83[1671:SSATCH]2.0.CO;2
  23. Hirst, T.J. and Richird, A.F. (1975) Analysis of deep-sea nodule mining - seafloor interaction, Off. Tech. Conf., No. OTC 2241, Dallas
  24. Horn, D.R., Horn, B.M., and Delach, M.N. (1973) Copper and Nikel content of ocean ferromanganese deposits and their relation to properties of the substrate. In Morgenstein, M. (ed.) The Origin and distribution of manganese nodules in the Pacific and prospects for exploration, Hawaii Inst. Geophysics, Honolulu, p. 7783
  25. Houston, W.N. and Mitchell, J.K. (1969) Property relationships in sensitive clays. Journal of the soil Mechanics and Foundations Division, v. 95, p. 1037-1062
  26. IFREMER (1989) Evaluation et etude des moyens necessaires a l' exploitation des nodules polymetalliques, Rapport final, TOME I, p. 1/1-5/10
  27. Johnson, D.A (1972) Ocean-floor erosion in the equatorial Pacific. Geological Society of America Bulletin, v. 83, p. 3121-3144 https://doi.org/10.1130/0016-7606(1972)83[3121:OEITEP]2.0.CO;2
  28. Kadko, D. (1985) Late Cenozoic sedimentation and metal deposition in the north Pacific. Geochimica et Cosmochimica Acta, v. 49, p. 651-661 https://doi.org/10.1016/0016-7037(85)90160-7
  29. Keller, G. and Barron, J.A. (1983) Paleoceanographic implications of Miocene deep-sea hiatuses. Geological Society of America Bulletin, v. 94, p. 590-613 https://doi.org/10.1130/0016-7606(1983)94<590:PIOMDH>2.0.CO;2
  30. Keller, G.H. and Yincan, Y. (1985) Geotechnical properties of surface and near-surface deposits in the East China Sea. Continental Shelf Research, v. 4, p. 159-174 https://doi.org/10.1016/0278-4343(85)90027-5
  31. Kennett, J.P (1982) Marine geology. Prentice-Hall Inc., Englewood Cliffs, N.J., 813p
  32. Lee, H.J. and Clausner, J.E. (1979) Seafloor soil sampling and geotechnical parameter determination-handbook, Technical Report Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, California, 121p
  33. Lisitzin, A.P. (1972) Sedimentation in the world ocean. SEPM Spec. Publ., 17, 218p
  34. Mantyla, A.W. (1975) On the potential temperature in the abyssal Pacific Ocean. Journal of Marine Research, v. 33, p. 341-354
  35. Mller, P.J. and Mangani, A. (1980) Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by Th-230 and Pa-231. Earth Planetary Science Letter; v. 51, p. 94-114 https://doi.org/10.1016/0012-821X(80)90259-9
  36. Oebius, H.U., Becker; H.J., Rolinski, S., and Jankowski, J.A. (2001) Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep-sea research II. v. 48, p. 3453-3467 https://doi.org/10.1016/S0967-0645(01)00052-2
  37. Piper; D.Z., Cannon, W., and Leong, K. (1977) Composition and abundance of ferromanganese nodules at DOMES Sites A, B, and C: relationship with bathymetry and stratigraphy, In Piper, D.Z. (ed.) Deep Ocean Environmental Study: Geology and Geochemistry of DOMES A, B, and C, Equatorial Pacific, USGS OpenFile Report 77-778, Menlo Park, 217p
  38. Piper, D.Z., Cook, H.E., and Gardner, J.Y. (1979) Lithic and acoustic stratigrapfy of the equatorial north Pacific: DOMES sites A, B, and C. In Bischoff, J.L. and Piper, D.Z. (eds.) Marine Geology and Oceanography of the Pacific Manganese Nodule Province, Plenum Press, New York, p. 309-348
  39. Rawson, M.D. and Ryan, W.B.E (1978) Oceanic floor sediment and polymetallic nodules. World oceanic floor panorama, Lamont-Doherty Geol. Obs., Palisades (map)
  40. Richards, A.F and Chaney, R.C. (1981) Present and future geotechnical research needs in deep ocean mining. Marine Mining, v. 2, p. 315-337
  41. Scalater, J.G., Anderson, R.N., and Bell, M.L. (1971) Elevation of ridges and evolution of the central eastern Pacific: Journal of Geophysical Research, v. 76, p 7888-7915 https://doi.org/10.1029/JB076i032p07888
  42. Shepard, F.P. (1954) Nomenclature based on san-silt-clay ratios. Journal of Sedimentary Petrology, v. 24, p. 151-158
  43. Theyer; F (1977) Micropaleontological dating of DOMES project box cores from test areas A and B, tropical Pacific. In Piper; D.Z. (ed.) Deep ocean environmental study: geology and geochemistry of DOMES sites A, B, and C, equatorial north Pacific, USGS open-file report 77-778, Menlo Park, 267p
  44. THETIS (1992) The environmental impact of deep sea mining, section 1. Nodules and environment. 283p
  45. Tsurusaki K., Yamazaki, T., and Handa, K. (1994) Geotechnical properties of deep-sea sediments and manganese nodules in the Penrhyn Basin, South Pacific. In Usui A. (ed.) Marine Geology, Geophysics and Manganese Nodule Deposits in the Penrhyn Basin, South Pacific, Geological Survey of Japan Cruise Report No. 23, p. 225-240
  46. van Andel, T.H., Heath, G.R., and Bennet, R.H. (1973) Geological results of Leg 163: the central equatorial Pacific, west of the East Pacific Rise. Initial Report of Deep-Sea Drilling Project, v. 16, p. 411-472
  47. van Andel, Tj.H., and Moore Jr., T.C. (1975) Cenozoic Calcium carbonate Distribution and calcite compensation depth in the central Equatorial Pacific Ocean, Geology, p. 87-92
  48. Velede, B. (1992) Introduction to clay minerals, cemistry, origins, uses and environmental significance. Chap- man & hall , London, 198p
  49. Volet,J., Pastouret, L., and Vergnaud-Granzzini, C. (1980) Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: A review. Marine Geology, v. 34, p. 128
  50. von Stackelberg, U. (1979) Sedimentation, Hiatus, and Development of Manganese nodules: VALDVIA Site VA-13/2. Northern Central Pacific In Bischoff, J.L. and Piper, D.Z. (eds.) Marine geology and oceanography of the Pacific manganese nodule province, Plenum Press, New York, p. 529-557
  51. Weber, M.E., von Stackelberg, U., Marchig, V., Wiedicke, M., and Grupe, B. (2000) Variability of surface sediments in the Peru basin: dependence on water depth, productivity, bottom water flow, and seafloor topography. Marine Geology, v. 163, p. 169-184 https://doi.org/10.1016/S0025-3227(99)00103-6