• Title/Summary/Keyword: high thermal conductivity

Search Result 1,063, Processing Time 0.029 seconds

Thermophysical Properties of Epoxy Molding Compound for Microelectronic Packaging (반도체 패키지 EMC의 열물성 연구)

  • 이상현;도중광;송현훈
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.33-37
    • /
    • 2004
  • As the high speed and high integration of semiconductor devices and the generation of heat increases resulted in the effective heat dissipation influences on the performance and lifetime of semiconductor devices. The heat resistance or heat spread function of EMC(epoxy molding compound) which protects these devices became one of very important factors in the evaluation of semiconductor chips. Recently, silica, alumina, AlN(aluminum nitride) powders are widely used as the fillers of EMC. The filler loading in encapsulants was high up to about 80 vol%. A high loading of filler was improved low water absorption, low stress, high strength, better flowability and high thermal conductivity. In this study, the thermal properties were investigated through thermal, mechanical and microstructure. Thermophysical properties were investigated by laser flash and differential scanning calorimeter(DSC). For detailed inspection of materials, the samples were examined by SEM.

  • PDF

A Study on the High Temperature Thermal Conductivity Measurement of Nanofluid Using a Two-Phase Model (2상 모델을 이용한 나노유체의 고온 열전도도 측정 연구)

  • Park, Sang-Il;Lee, Wook-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.153-156
    • /
    • 2010
  • The effective thermal conductivity of two-phase materials such as unbonded silica sands saturated with a nanofluid was measured at high temperature using the transient thermal probe method. The nanofluid used in this study was a water-based mixture of 0.1 vol% $Al_2O_3$ nanoparticles with a diameter of 45 nm. The convection problem for fluids was prevented with this measurement method because the fluid was confined to within very small pore spaces. Based on the prediction model for unbonded sands, the thermal conductivities of the saturating nanofluid at high temperatures could be determined with the measured effective thermal conductivities for the two-phase material. In the results, increases in the thermal conductivity ratios of the nanofluid to pure water when temperatures were varied from $30^{\circ}$ to $80^{\circ}C$ were within the range of 4.87%~5.48%.

Study on Thermal Conductive PV(PhotoVoltaic) Backsheet using MgO Masterbatch with High Thermal Conductivity (고열전도도 MgO를 이용한 열전도성 PV(PhotoVoltaic) 백시트의 연구)

  • Kim, Chang-Hee;Jang, Hyun-Tae;Park, Jong-Se;Yoon, Jong-Kuk;Noh, Eun-Seob;Park, Ji-Soo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.448-453
    • /
    • 2018
  • PV module protective film plays an important role in protecting the solar cell from external environment by anti-hydrolysis polyester, UV resistance and mechanical properties. The backsheet was manufactured by using Roll-to-Roll dry laminating process. The backsheet structure is composed of 3 layers, which are PE, PET, and Fluorine polymer films. In this study, we have experimented the variation of thermal conductivities depending on MgO inputs 10% to 25% in order to confirm the dependence of the module efficiencies. High thermal conductive backsheet can increase the module output power efficiency because the heat is dissipated by spreading out the internal heat. Long-term environment weatherability tests were conducted for confirming 25 year reliability in the field such as PCT, UV, and power efficiency degradations. As the evaluation result, high thermal conductivity can be effective for increase of power efficiency of solar panel by using thermal conductive MgO masterbatch.

Fabrication of CNT/CMK3 Carbon Composites with High Electrical/Thermal Conductive Properties

  • Choi, Seung Dae;Lee, Ju Hyun;Park, Da Min;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2155-2161
    • /
    • 2013
  • Composite materials of mesoporous carbon and carbon nanotubes were synthesized using Ni, Co and Pd-loaded CMK3 via a catalytic reaction of methane and $CO_2$. The CNTs grew from the pores of the mesoporous carbon supports, and they were attached tightly to the CMK3 surface in a densely tangled shape. The CNT/CMK3 composite showed both non-graphitic mesoporous structures, and graphitic characteristics originating from the MWCNTS grown in the pores of CMK3. The electrochemical properties of the materials were characterized by their electrorheological effects and cyclic voltammetry. The CNTs/CMK3 composites showed high electrical conductivity and current density. The CNT/CMK3 or KOH-modified CNT/CMK3 particles were incorporated in a PMMA matrix to improve the thermal and electrical conductivity. Even higher thermal conductivity was achieved by the addition of KOH-modified CNT/CMK3 particles.

Highly filled AIN/epoxy composites for microelectronic encapsulation (반도체 봉지용 고충진 AIN/Epoxy 복합재료)

  • 배종우;김원호;황영훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.131-134
    • /
    • 2000
  • Increased temperature adversely affects the reliability of a device. So, package material should have high thermal diffusion, i.e., high thermal conductivity. And, there are several other physical properties of polymeric materials that are important to microelectronics packaging, some of which are a low dielectric constant, a low coefficient of thermal expansion (CTE), and a high flexural strength. In this study, to get practical maximum packing fraction of AIN (granular type) filled EMC, the properties such as the spiral flow, thermal conductivity, CTE, and water resistance of AIN-filled EMC (65-vol%) were evaluated according to the size of AIN and the filler-size distribution. Also, physical properties of AIN filled EMC above 65-vol% were evaluated according to increasing AIN content at the point of maximum packing fraction (highly loading condition). The high loading conditions of EMC were set $D_L/D_S$=12 and $X_S$=0.25 like as filler of sphere shape and the AIN filled EMC in this conditions can be obtained satisfactory fluidity up to 70-vol%. As a result, the AIN filled EMC (70-vol%) at high loading condition showed improved thermal conductivity (about 6 W/m-K), dielectric constant (2.0~3.0), CTE(less than 14 ppm/$^{\circ}C$) and water resistance. So, the AIN filled EMC (70-vol%) at high loading condition meets the requirement fur advanced microelectronic packaging materials.

  • PDF

Evaluation of Thermal Properties for the Bentonil-WRK Bentonite

  • Seok Yoon;Gi-Jun Lee;Deuk-Hwan Lee;Min-Seop Kim;Jung-Tae Kim;Jin-Seop Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • The bentonite buffer material is a crucial component in an engineered barrier system used for the disposal of high-level radioactive waste. Because a large amount of heat from the disposal canister is released into the bentonite buffer material, the thermal conductivity of the bentonite buffer is a crucial parameter that determines the design temperature. At the Korea Atomic Energy Research Institute (KAERI), a new standard bentonite (Bentonil-WRK) has been used since 2022 because Gyeongju (KJ) bentonite is no longer produced. However, the currently available data are insufficient, making it essential to investigate both the basic and complex properties of Bentonil-WRK. Thus, this study evaluated its geotechnical and thermal properties and developed a thermal conductivity empirical model that considers its dry density, water content, and temperature variations from room temperature to 90℃. The coefficient of determination (R2) for the model was found to be 0.986. The thermal conductivity values of Bentonil-WRK were 1-10% lower than those of KJ bentonite and 10-40% higher than those of MX-80 bentonites, which were attributable to mineral-composition differences. The thermal conductivity of Bentonil-WRK ranged between 0.504 and 1.149 W·(m-1·K-1), while the specific heat capacity varied from 0.826 to 1.138 (kJ·(kg-1·K-1)).

Low Temperature Thermal Conductivity of Sheath Alloys for High $T_{c}$ Superconductor Tape

  • Park, Hyung-Sang;Oh, Seung-Jin;Jinho Joo;Jaimoo Yoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.32-37
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity and electrical conductivity of sheath materials for Bi-Pb-Sr-Ca-Cu-O(BSCCO) tapes has been characterized. The thermal conductivity at low temperature range (10~300K) of Ag and Ag alloys were evaluated by both direct and indirect measurement techniqueas and compared with each other, It was observed that the thermal conductivity decreases with increasing the content of alloying element such as Au, Pd and Mg. Thermal conductivity of pure Ag at 3 0K was measured to be 994.0 W(m.K) on the other hand, the corresponding values of $Ag_{0.9995}Mg_{0.0005}$, $Ag_{0.974}$, $Au_{0.025}$, $Mg_{0.001}$, $Ab_{0.973}$, $Au_{0.025}$, $Mg_{0.002}$ and $Ag_{0.92}$, $Pb_{0.06}$, $Mg_{0.02}$ were 342.6, 62.1, 59.2 and 28.9 W(m.K), respectively, indicating 3 to 30 times lower than that of pure Ag. In addition, the thermal conductivity of pure Ag measured by direct and indirect measurement techniques was 303.2 and 363.8 W(m.K) The difference in this study is considered to be within an acceptable error range compared to the reference data.

  • PDF

Thermal transfer behavior in two types of W-shape ground heat exchangers installed in multilayer soils

  • Yoon, Seok;Lee, Seung-Rae;Go, Gyu-Hyun;Xue, Jianfeng;Park, Hyunku;Park, Dowon
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.79-98
    • /
    • 2014
  • This paper presents an experimental and numerical study on the evaluation of a thermal response test using a precast high-strength concrete (PHC) energy pile and a closed vertical system with W-type ground heat exchangers (GHEs). Field thermal response tests (TRTs) were conducted on a PHC energy pile and on a general vertical GHE installed in a multiple layered soil ground. The equivalent ground thermal conductivity was determined by using the results from TRTs. A simple analytical solution is suggested in this research to derive an equivalent ground thermal conductivity of the multilayered soils for vertically buried GHEs. The PHC energy pile and general vertical system were numerically modeled using a three dimensional finite element method to compare the results with TRTs'. Borehole thermal resistance values were also obtained from the numerical results, and they were compared with various analytical solutions. Additionally, the effect of ground thermal conductivity on the borehole thermal resistance was analyzed.

Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation (다공성 단열재를 포함한 열방어구조의 열 특성 분석)

  • Hwang, Kyungmin;Kim, Yongha;Lee, Jungjin;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.26-34
    • /
    • 2016
  • In a number of industries, porous insulations have been frequently used, reducing thermal insulation space through excellent performance of the thermal insulation's characteristics. This paper suggests an effective thermal conductivity prediction model. Firstly, we perform a literature review of traditional effective thermal conductivity prediction models and compare each model with experimental heat transfer results. Furthermore, this research defines the effectiveness of thermal conductivity prediction models using experimental heat transfer results and the Zehner-Schlunder model. The newly defined effective thermal conductivity prediction model has been verified to better predict performance than other models. Finally, this research performs a transient heat transfer analysis of a thermal protection system with a porous insulation in a high speed vehicle using the finite element method and confirms the validity of the effective thermal conductivity prediction model.

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.